화학공학소재연구정보센터
Journal of the American Chemical Society, Vol.130, No.14, 4984-4991, 2008
Highly cis-1,4 selective polymerization of dienes with homogeneous Ziegler-Natta catalysts based on NCN-pincer rare earth metal dichioride precursors
The first aryldiimine NCN-pincer ligated rare earth metal dichlorides (2,6-(2,6-C6H3R2N=CH)(2)C6H3)LnCl(2)(THF)(2) (Ln = Y, R = Me (1), Et (2), Pr (3); R = Et, Ln = La (4), Nd (5), Gd (6), Sm (7), Eu (8), Tb (9), Dy (10), Ho (11), Yb (12), Lu (13)) were successfully synthesized via transmetalation between 2,6-(2,6-C2H3-R2N=CH)(2)-C6H3Li and LnCl(3)(THF)(1 similar to 3.5). These complexes are isostructural monomers with two coordinating THF molecules, where the pincer ligand coordinates to the central metal ion in a kappa C:kappa N: kappa N' tridentate mode, adopting a meridional geometry. Complexes 1-6, 9-11, and 13 combined with aluminum tris(alkyl)s and [Ph3C][B(C6F5)(4)] established a homogeneous Ziegler-Natta catalyst system, which exhibited high activities and excellent cis-1,4 selectivities for the polymerizations of butadiene (T-p = 25 degrees C, 99.9%; 0 degrees C, 100%) and isoprene (T-p = 25 degrees C, 98.8%). Remarkably, such high cis-1,4 selectivity almost remained at elevated polymerization temperatures up to 80 degrees C and did not vary with the type of the central lanthanide element, however, which was influenced obviously by the ortho substituent of the N-aryl ring of the ligands and the bulkiness of the aluminum alkyls. The Ln-Al bimetallic cations were considered as the active species. These results shed new light on improving the catalytic performance of the conventional Ziegler-Natta catalysts for the specific selective polymerization of dienes.