Langmuir, Vol.24, No.4, 1541-1549, 2008
3D force and displacement sensor for SFA and AFM measurements
A new device has been designed, and a prototype built and tested, that can simultaneously measure the displacements and/or the components of a force in three orthogonal directions. The "3D sensor" consists of four or eight strain gauges attached to the four arms of a single cross-shaped force-measuring cantilever spring. Finite element modeling (FEM) was performed to optimize the design configuration to give desired sensitivity of force, displacement, stiffness, and resonant frequency in each direction (x, y, and z) which were tested on a "mesoscale" device and found to agree with the predicted values to within 4-10%. The device can be fitted into a surface forces apparatus (SFA), and a future smaller "microscale" rnicrofabricated version can be fitted into an atomic force microscope (AFM) for simultaneous measurements of the normal and lateral (friction) forces between a tip (or colloidal bead probe) and a surface, and the topography of the surface. Results of the FEM analysis are presented, and approximate equations derived using linear elasticity theory are given for the sensitivity in each direction. Initial calibrations and measurements of thin film rheology (lubrication forces) using the "mesoscale" prototype show the device to function as expected.