화학공학소재연구정보센터
Powder Technology, Vol.181, No.1, 89-95, 2008
On the pressure drop prediction of filter media composed of fibers with bimodal diameter distributions
In addition to collection efficiency, pressure drop is the most important characteristic of a filter medium. While there are numerous analytical expressions available for predicting the pressure drop of the filters made up of fibers with a unimodal fiber diameter distribution, there are not enough studies dedicated to filters composed of fibers with a bimodal (or multimodal) fiber diameter distribution. In this work, the pressure drop per unit thickness of filters made of bimodal fiber diameters is calculated by solving the Navier-Stokes equations in a series of 2-D geometries. These results are used to find the unimodal equivalent diameters of each bimodal filter that could be used in the existing expressions for calculating pressure drop. In agreement with the work of Brown and Thorpe (Brown, R.C., Thorpe, A., Glass-fiber filters with bimodal fiber size distributions. Powder Technology 118 (2001) 3-9.], it was found that the area-weighted averaging of the fiber diameters in a bimodal filter provides a relatively good estimation of its equivalent unimodall fiber diameter. We, however, noticed that in such an averaging the error percentage in the pressure drop prediction is sensitive to the fiber diameter ratios as well as the fraction of each fiber diameter in the bimodal filter. We, therefore, obtained a correction factor for the estimation of the unimodall equivalent diameters as a function of fiber diameter ratio and their number fractions. (c) 2007 Elsevier B.V. All rights reserved.