Polymer(Korea), Vol.21, No.2, 222-233, March, 1997
EPDM/PP 블렌드의 물성과 몰폴로지(I)
Properties and Morphology of EPDM/PP B1ends(I)
초록
EPDM의 경화반응에 있어서 가교 활성제와 경화제의 효과를 동적 DSC법으로 조사하였다. 가교 활성제의 존재는 동적 경화 블렌드에서 EPDM의 반응온도와 분산상의 크기를 감소시켰다. 또한 경화제의 첨가에 의해서도 같은 결과가 관찰되었다. MBl/PPl 블렌드의 EPDM 겔 분율은 10phr 가교제와 3 phr 가교 활성제에서 일정하게 되었다. EPDM의 반응을 위한 적절한 가교제와 활성제의 함량은 10 phr과 3phr이였다. 단순 블렌드에서 혼합초기에 전체적인 몰폴로지의 고정이 있으며, MBl/PPl 50/50에서 두 상이 연속상을 형성하는 co-continuous 구조를 형성함을 알 수 있었다. 블렌드 물질의 점도는 두 성분의 점도보다 항상 낮게 나오며 이는 두 고분자의 비상용성과 첨가한 가공 oil의 영향이다. 동적 가교 블렌드의 경우, 상전환 현상이 MBl/PPl 70/30에서 일어났다. 동적 가교 블렌드의 몰폴로지 전개를 모든 조성에서 관찰하였다. MBl/PPl 50/50 블렌드는 EPDM/PP의 co-continuous 구조를 보였다.
The effect of activator and curing agent on EPDM curing reaction was investigated by differential scanning calorimeter. The activator reduced the reaction temperature of EPDM and the size of dispersed phase in the dynamic cured blends. The same results were observed by adding the curing agent. The gel fraction of EPDM in MBI/PPI 70/30 blend was leveled off at 10 phr curing agent and 3 phr activator. The optimum amounts of activator and curing agent for EPDM reaction are 3 phr and 10 phr, respectively. In linear blends, the morphology was fixed at the early stage of mixing and the co-continuous structure was shown in 50/50 EPDM/PP blend. Melt viscosity of the blends was lower than the calculated values by the additivity rule of the component polymers in all compositon range because of the incompatibility of EPDM and PP, and the effect of added processing oil. In dynamically cured blends, the phase inversion was taken place in MBI/PPI 70/30 blend. Morphology development of dynamically cured blends was investigated in all composition. The MBI/PPI 50/50 blends showed co-continuous structure of EPDM/PP.
- Kresge EN, "Polymer Blends," chap. 20, vol. II, D.R. Paul and S. Newman, Eds., Academic Press, New York (1978)
- Coran AY, Das B, Patel RP, U.S. Patent, 4,130,535 (1978)
- Coran AY, Patel RP, Rubber Chem. Technol., 56, 210 (1983)
- Coran AY, Patel RP, Rubber Chem. Technol., 53, 781 (1980)
- Coran AY, Patel RP, Rubber Chem. Technol., 54, 892 (1981)
- Coran AY, Patel RP, Rubber Chem. Technol., 55, 116 (1982)
- Karger-Kocisis J, Kuleznev VN, Polymer, 25, 279 (1984)
- Kresge EN, J. Appl. Polym. Sci. Appl. Polym. Symp., 39, 37 (1984)
- Walker BM, Rader CP, "Handbook of Thermoplastic Elastomers," 2nd Ed., Van Nostrand Reinhold (1988)
- De SK, Bhowmick AK, "Thermoplastic Elastomer from Rubber Plastics Blends," Ellis Horwood, New York (1990)
- Sawyer LC, Grubb DT, "Polymer Microscopy," Chapman and Hall, New York (1987)
- Flory PJ, Rehner J, J. Chem. Phys., 11, 521 (1943)
- Jordhamo GM, Manson JA, Sperling LH, Polym. Eng. Sci., 26, 517 (1986)
- Miles IS, Zurek A, Polym. Eng. Sci., 28, 796 (1988)
- Romanini D, Garagnanai E, Marchetti E, "New Polymeric Materials," VHE Science (1987)
- Martuscelli E, "Thermoplastic Elastomer from Rubber Plastics Blends," chap. 2, S.K. De and A.K. Bhowmick, Eds., Ellis Horwood, New York (1990)
- Min K, White JL, Fellers JF, J. Appl. Polym. Sci., 29, 2117 (1984)
- Wu S, Polym. Eng. Sci., 27, 335 (1987)