Polymer(Korea), Vol.21, No.2, 252-261, March, 1997
디시아네이트 수지의 경화거동 및 열적 특성
The Cure Behavior and Thermal Properties of Dicyanate Resin
초록
여러 가지 조성의 촉매를 함유한 디시아네이트 수지(1,1-bis(4-cynantophenol) ethane)계의 경화거동 및 열적 특성을 조사하였다. 사용된 촉매의 함량은 nonylphenol의 경우 0∼9 phr, zinc stearate의 경우 0∼0.75phr로 조절하였다. 수지의 경화반응속도를 조사하기 위하여 DSC(differential scanning calorimetry)와 FTIR (Fourier transform infrared spectrophotometer)을 이용하였다. Dynamic DSC 방법과 isothermal DSC 방법을 이용하여 경화 과정에서 발생하는 발열량을 측정하였다. 디시아네이트 수지의 cyclotrimerization에 의한 가교반응을 해석하기 위하여 자촉매 반응 메커니즘을 가정한 2차 반응속도식을 이용하였으며 반응속도식이 디시아네이트 수지의 촉매계 뿐만 아니라 비촉매계의 경화반응을 잘 설명하는 것으로 나타났다. FTIR을 이용하여 경화반응이 진행되는 동안에 나타나는 화학구조의 변화를 관찰하였다. 경화된 디시아네이트 수지의 열분해 특성을 조사하기 위하여 TGA (thermogravimetic analyzer)를 이용하였다. 촉매 함량이 증가함에 따라 디시아네이트 수지의 반응속도는 증가하였으나 Tg와 열안정성은 감소하였다.
The cure behavior and thermal properties of dicyanate resin systems containing various catalyst contents were investigated. The amounts of catalyst added were 0~9 phr for nonylphenol and 0~0.75 phr for zinc stearate. DSC (differential scanning calorimetry) and FTIR (Fourier Transform Infrared Spectrophotometer) were used to investigate cure kinetics of the resin. Reaction exothermic heat was measured during curing reaction by dynamic DSC technique and isothermal DSC technique. A second order reaction kinetic equation considering autocatalytic reaction mechanism was used to analyze cyclotrimerization reaction of dicyanate resin, and the equation could describe well the cure kinetics of catalyzed and uncatalyzed dicyanate resin systems. The chemical structure change during curing reaction was investigated by FTIR. TGA (thermogravimetic analyzer) was used to investigate thermal degradation characteristics of the cured dicyanate resins. The reaction rate of the resin increased with increasing the catalyst content. but Tg and thermal stability decreased with increasing the catalyst content.
- Bogan GW, Lassy ME, Monnerat GA, Woo EF, SAMPE J., 24, 45 (1988)
- Shimp DA, Christenson JR, Ising SF, "AroCyCyanates Ester Resins-Chemistry, Properties and Applications," Rhone-Poulenc Publication (1991)
- Shimp DA, "Engineering Plastics," in "Engineered Material Handbook," J.N. Epel et al. eds., vol. 2, p. 232, ASM international (1989)
- Shimp DA, Ising SJ, Christenson JR, SPE/Case-Western Conference on High Temperature Polymers, Oct., 2 (1989)
- Parathomas KI, Wang DW, J. Appl. Polym. Sci., 44, 1267 (1992)
- Cozzens RF, Walter P, J. Appl. Polym. Sci., 34, 601 (1987)
- Osei-Owusu A, Martin GC, Polym. Eng. Sci., 1, 1604 (1991)
- Shimp DA, Hudock FA, Ising SJ, 33rd International SAMPE Symposium (1988)
- Gupta AM, Macosko CW, Makromol. Chem. Macromol. Symp., 45, 105 (1991)
- Papathomas KI, Wang DW, J. Appl. Polym. Sci., 44, 1267 (1992)
- Gupta AM, Macosko CW, Macromolecules, 26, 2455 (1993)
- Kim DS, Kim SC, Polym. Eng. Sci., 34(8), 625 (1994)
- Bauer M, Bauer J, Kuhn G, Acta Polym., 37, 715 (1986)
- Lee BK, "Synthesis and Characterization of Bisphenol-A Dicyanate/Polyetherimide Semi-IPN," Ph.D. Thesis, KAIST (1995)
- Chen YT, "Resin Transfer Molding of Liquid Dicyanate: Chemorheology, Molding Experiments, and Wetting Visualization," Ph.D. Thesis, Univ. of Minnesota (1993)
- Sourour S, Kamal MR, Thermochim. Acta, 14, 41 (1976)
- Kuester JL, Mize JM, "optimization Techniques with FORTRAN," McGraw-Hill, New York (1973)