화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.2, 289-295, March, 1997
Poly(butyl acrylate)/Poly(methyl methacrylate) Core/shell 입자를 이용한 Poly(methyl methacrylate)의 강인화
Toughening Poly(methyl methacrylate) with Poly(butyl acrylate)/Poly(mothy1 methacrylate) Core/Shel1 Particles
초록
입자크기의 조절만으로 투명성을 떨어뜨리지 않고 poly(methyl methacrylate) (PMMA)를 강인화하기 위하여, poly(butyl acrylate) (PBA)를 core로 하고 PMMA를 shell로 하는 core/shell 구조 고무입자를 seed 유화중합으로 합성하여 이들로 PMMA를 강인화하였다. 합성한 다양한 core/shell 입자의 형태구조와 분산성을 전자현미경으로 관찰하였다. 고무입자의 크기가 220nm 이하에서 강인화 PMMA들은 투명성을 유지하고 있었다. Core 입자의 함량이 증가함에 따라 충격강도와 인장 파단신장률은 증가하였으며, 탄성률, 항복강도, 인장강도는 감소하였다. 입자의 함량을 20%로 고정하였을 때 충격강도는 150 nm의 입자크기에서 최대의 충격강도에 도달하였다. 이로써 입자크기의 조절만으로도 투명성을 떨어뜨리지 않고 PMMA를 강인화할 수 있음을 확인하였다.
Poly(methyl methacrylate) (PMMA) was toughened with core/shell rubber particles, for which the transparency was maintained by mere controlling particle size. The core/shell rubber paricles which contain poly(butyl acrylate) (PBA) as a core and PMMA as a shell, were prepared by two-step emulsion polymerization. The toughened PMMA was observed by electron microscopies to investigate the dispersion of rubber particles. The blends were transparent when the core particle size was smaller than 220 nm. Notched Izod impact strength as well as elongation at break increased with increasing content of rubber particles: Modulus, yield strength, and tensile strength were decreased with increasing rubber content. Full impact strength were reached at the size of rubber particles of 150 nm.
  1. Wu S, Polym. Eng. Sci., 30, 753 (1990) 
  2. Shah N, J. Mater. Sci., 23, 3623 (1988) 
  3. Singh YP, Singh RP, J. Appl. Polym. Sci., 37, 2491 (1989) 
  4. Oshima J, Sasaki I, Polym. News, 16, 198 (1991)
  5. Chen YC, Dimonie V, El-Aasser MS, Polym. Int., 30, 185 (1993)
  6. Chern CS, Hsu H, J. Appl. Polym. Sci., 55(4), 571 (1995) 
  7. Dimonie V, El-Aasser MS, Klein A, Vanderhoff JW, J. Polym. Sci. A: Polym. Chem., 22, 2197 (1984)
  8. Walker I, Collyer AA, "Rubber Toughened Engineering Plastics," ed. by A.A. Collyer, Chapter 2, Chapman and Hall, London (1994)
  9. Lu M, Keskkula H, Paul DR, Polymer, 34, 1874 (1993) 
  10. Lu M, Keskkula H, Paul DR, Polym. Eng. Sci., 34(1), 33 (1994) 
  11. Lu M, Keskkula H, Paul DR, McCreedy KM, Hanton DE, Polymer, 28, 2063 (1987) 
  12. Cheng TW, Keskkula H, Paul DR, J. Appl. Polym. Sci., 45, 531 (1992) 
  13. Oshima J, Fujii T, Tachibana S, Kobunshi Ronbunshu, 52, 46 (1995)
  14. Wrotecki C, Heim P, Gaillard P, Polym. Eng. Sci., 31, 213 (1991) 
  15. Wrotecki C, Heim P, Gaillard P, Polym. Eng. Sci., 31, 218 (1991) 
  16. Kim BK, Shin GS, Kim YJ, Park TS, J. Appl. Polym. Sci., 47, 1581 (1981) 
  17. Ahn TO, Hwang TW, Shin K, Jho JY, Polym.(Korea), 20(3), 535 (1996)
  18. Bucknall CB, "Toughened Plastics," Chapter 7, Applied Science, London (1977)
  19. Kinloch AJ, Young RJ, "Fracture Behavior of Polymers," p. 438, Elsevier, London (1983)
  20. Lovell PA, McDonald J, Saunders DEJ, Sherratt MN, Young RJ, "Toughened Plastics I," Adv. Chem. Ser. 233, eds. by C.K. Riew and A.J. Kinloch, p. 61, Amer. Chem. Soc., Washington D.C. (1992)