- Previous Article
- Next Article
- Table of Contents
Polymer(Korea), Vol.21, No.2, 332-341, March, 1997
UV 처리에 의해 PEO가 고정화된 PMMA 필름 표면에서의 단백질 흡착 및 혈소판 점착 거동
Plasma Adsorption and Platelet Adhesion PEO-entrapped PMMA Film Surfaces Prepared by Photo-induced Polymerization
초록
PEO가 1∼20wt% 함유된 MMA를 UV 처리 (100w, 365nm)에 의해 중합하여 PEO가 고정화된 PMMA 필름을 제조하였다. 이때 사용한 PEO의 분자량은 400, 10000, 100000이었다. 제조된 필름 표면들은 물접촉각 측정과 ESCA에 의해 분석되었다. 필름 내에 고정화된 PEO의 안정성을 평가하기 위해 필름을 일주일까지 물 속에 담가 계속 흔들어 준 후 꺼내어 무게 변화를 측정하였다 PEO가 고정화된 필름 표면에서의 혈장 단백질 흡착 및 혈소판 점착 거동을 조사한 결과, 필름 내에 고정화된 PEO의 분자량 증가에 따라 또한 PEO의 표면 밀도 증가에 따라 단백질 흡착 및 혈소판 점착이 감소하는 경향을 보였다. 특히 분자량 100000의 PEO가 고정화된 필름 표면에서 PEO의 표면 밀도가 높을 때 단백질 흡착 및 혈소판 점착 감소가 상당히 낮게 나타나, 혈액 적합성 재료로서의 사용 가능성을 높게 해 주고 있다.
Polyethylene oxide (PEO)-entrapped polymethyl methacrylate (PMMA) films were prepared by photo-induced polymerization of methyl methacrylate (MMA) containing 1 ~ 20 wt% of PEO with different molecular weight (400, 10000, and 100000). The photopolymerization was carried out using a 100W ultraviolet light source (wavelength, 365 nm). The prepared PEO-entrapped PMMA film surfaces were characterized by the measurement of water contact angle and electron spectroscopy for chemical analysis (ESCA). The stability of PEO entrapped in PMMA films was also examined by immersing the films in water for up to 7 days with continuous shaking and measuring the weight changes. The behavior of plasma protein adsorption and platelet adhesion on the PEO-entrapped PMMA film surfaces was investigated. It was observed that the plasma protein adsorption and platelet adhesion on the film surfaces decreased with increasing PEO molecular weight and its surface density. The PEO 100,000-entrapped surfaces with high PEO content were very effective for the prevention of protein adsorption and platelet adhesion.
Keywords:PEO surfaces;polymethyl methacrylate (PMMA);photo-induced polymerization;protein adsorption;platelet adhesion
- Andrade JD, Nagaoka S, Cooper S, Okano T, Kim SW, ASAIO J., 10, 75 (1987)
- Merrill EW, Salzman EW, ASAIO J., 6, 60 (1983)
- Lee JH, Lee HB, Andrade JD, Prog. Polym. Sci., 20, 1043 (1995)
- Lee JH, Kopecek J, Andrade JD, J. Biomed. Mater. Res., 23, 351 (1989)
- Lee JH, Kopeckova P, Kopecek J, Andrade JD, Biomaterials, 11, 455 (1990)
- Jeon SI, Lee JH, Andrade JD, deGennes PG, J. Colloid Interface Sci., 142, 149 (1991)
- Amiji M, Park K, J. Biomater. Sci.-Polym. Ed., 4, 217 (1993)
- Andrade JD, Medical Instrum., 7, 110 (1973)
- Coleman DL, Gregonis DE, Andrade JD, J. Biomed. Mater. Res., 16, 381 (1982)
- Kjellander R, Florin E, J. Chem. Soc.-Faraday Trans., 77, 2053 (1981)
- Lee JH, Andrade JD, "Polymer Surface Dynamics," ed. by J.D. Andrade, p. 119, Plenum Press, New York (1988)
- Amiji M, Park K, Biomaterials, 13, 682 (1992)
- Kishida A, Mishima K, Corretge E, Konishi H, Ikada Y, Biomaterials, 13, 113 (1992)
- Desai NP, Hubbell JA, J. Biomed. Mater. Res., 25, 829 (1991)
- Llanos GR, Sefton MV, Macromolecules, 24, 6065 (1991)
- Kiss E, Golander CG, Eriksson JC, Prog. Colloid Polym. Sci., 74, 113 (1987)
- Nojiri C, Okano T, Jacobs HA, Park KD, Mohammad SF, Olsen DB, Kim SW, J. Biomed. Mater. Res., 24, 1151 (1990)
- Han DK, Jeong SY, Kim YH, J. Biomed. Mater. Res. Appl. Biomater., 23, 211 (1989)
- Mori Y, Nagaoka S, Takiuchi H, Kikuchi T, Noguchi N, Tanzawa H, Noishiki Y, Trans. ASAIO, 28, 459 (1982)
- Brinkman E, Poot A, vanderDoes L, Bantjes A, Biomaterials, 11, 200 (1990)
- Sun YH, Gombotz WR, Hoffman AS, J. Bioactive Compat. Polym., 1, 316 (1986)
- Jansen B, Ellinghorst G, J. Biomed. Mater. Res., 19, 1085 (1985)
- Fujimoto K, Inoue H, Ikada Y, J. Biomed. Mater. Res., 27, 1559 (1993)
- Jeong BJ, Lee JH, Lee HB, J. Colloid Interface Sci., 178(2), 757 (1996)
- Lee JH, Jeong BJ, Lee HB, J. Biomed. Mater. Res., 34, 105 (1997)
- Drumheller PD, Hubbell JA, J. Biomed. Mater. Res., 29, 207 (1995)
- Rabinow BE, Ding YS, Qin C, McHalsky ML, Schneider JH, Ashline KA, Shelbourn TL, Albrecht RM, J. Biomater. Sci.-Polym. Ed., 6, 91 (1994)
- Schwick HG, Heide K, Trends Biochem. Sci., 2, 125 (1977)