Polymer(Korea), Vol.21, No.3, 401-409, May, 1997
폐타이어 분쇄고무를 포한한 EPDM 가황물의 가황거동 및 물리적 성질
Cure Behaviors and Physical Properties of EPDM Vulcanizates Containing Ground Rubber
초록
충진제로 분쇄고무를 포함하고 있는 EPDM 가황물의 가황거동과 물성을 분쇄고무의 입자 크기 및 함량의 함수로 조사하여 보았다. 분쇄고무를 사용하였을 때가 분쇄고무를 사용하지 않았을 때보다 스코치타임과 최적경화시간 및 최대토크를 나타내는 시간이 짧았다. 이는 분쇄고무에 포함되어 있는 가황촉진제가 EPDM의 경화반응에 관여하기 때문이다. 분쇄고무가 포함됨에 따라 EPDM의 가교밀도는 감소하고 따라서 인장강도, 신장률 및 압축영구줄음률이 감소하였다. 오존균 열시험 결과 분쇄고무를 첨가하더라도 EPDM의 내오존성에는 별다른 물성의 영향을 미치지 않는 것으로 나타났다. 인장시편의 절단면을 SEM으로 관찰한 결과 EPDM과 분쇄고무의 계면에서 주로 절단이 일어났으며 이는 낮은 계면접착력 때문이다.
Cure behaviors and physical properties of EPDM vulcanizates containing ground rubber (GR) as a filler were studied with respect to the particle size and the amounts of GR. As GR was added into EPDM compounds, decrease in scorch time, optimum cure time and maximum torque was observed. This indicates that accelerator fragments in GR affect vulcanization reactions. Addition of GR decreases crosslink density of EPDM vulcanizates. Modulus, elongation at break and compression set of EPDM vulcanizates are on the decrease with respect to the addition of GR. From the results of air oven aging test and ozone cracking test, the resistances of EPDM rubber to weather and ozone cracking don't seem to be adversely affected by the addition of GR. Tensile fracture surfaces become rougher as the amount of GR increases. SEM fractographs of tensile fracture surfaces show that there is little adhesion between EPDM and GR, so tensile fractures mainly occur at the interface of EPDM and GR.
- LeBeau DS, Rubber Chem. Technol., 40, 217 (1967)
- Beckman JA, Crane G, Kay EL, Laman JR, Rubber Chem. Technol., 47, 597 (1974)
- Crane G, Kay EL, Rubber Chem. Technol., 48, 50 (1975)
- Crane G, Elafritz RA, Kay EL, Laman JR, Rubber Chem. Technol., 51, 577 (1978)
- Warner WC, Rubber Chem. Technol., 67, 559 (1994)
- Crane G, Fieldhouse JW, Kay EL, Rubber Chem. Technol., 48, 62 (1975)
- Fix SR, Elastomerics, 112, 38 (1980)
- Murtland WO, Elastomerics, 113, 13 (1981)
- Phadke AA, Chakraborty SK, De SK, Rubber Chem. Technol., 57, 19 (1984)
- Rajalingam P, Baker WE, Rubber Chem. Technol., 65, 908 (1992)
- Takallou HB, Takallou MB, Elastomerics, 121, 19 (1991)
- Oliphant K, Baker WE, Polym. Eng. Sci., 33, 166 (1993)
- Pittolo M, Burford RP, Rubber Chem. Technol., 58, 97 (1985)
- Klingensmith B, Rubber World, 203, 16 (1991)
- Gilbala D, Hamed GR, Rubber Chem. Technol., 67, 636 (1994)
- Adam G, Sebenik A, Osredkar U, Veksli Z,Ranogajec F, Rubber Chem. Technol., 63, 660 (1990)
- Adam G, Sebenik A, Osredkar U, Ranogajec F, Veksli Z, Rubber Chem. Technol., 64, 133 (1991)
- Champman AV, Porter M, "Natural Rubber Science and Technology," Ed. by A.D. Roberts, p. 519, Oxford University Press, New York (1988)
- Mathew NM, Bhowmick AK, De SK, Rubber Chem. Technol., 55, 51 (1982)
- Layer RW, Rubber Chem. Technol., 65, 211 (1992)
- Layer RW, Rubber Chem. Technol., 65, 822 (1992)
- Studebaker M, "Reinforcement of Elastomers," Ed. by G. Kraus, p. 342, Interscience Publishers, New York (1965)
- Medalia AI, Kraus G, "Science and Technology of Rubber," Eds. by J.E. Mark, B. Erman, and F.R. Eirich, 2nd Ed., p. 395, Academic Press, London (1994)
- Medalia AI, Kraus G, "Science and Technology of Rubber," Eds. by J.E. Mark, B. Erman, and F.R. Eirich, 2nd Ed., p. 409, Academic Press, London (1994)
- Medalia AI, Rubber Chem. Technol., 60, 45 (1987)
- Coran AY, "Science and Technology of Rubber," Eds. by J.E. Mark, B. Erman, and F.R. Eirich, 2nd Ed., p. 342, Academic Press, London (1994)