Biotechnology and Bioengineering, Vol.99, No.4, 1016-1027, 2008
Lentiviruses inefficiently incorporate human parainfluenza type 3 envelope proteins
We have previously shown that the envelope glycoproteins of human parainfluenza type 3 (HPIV3), F and HN, are able to pseudotype lentiviruses, but the titers of these viruses are too low for use in clinical gene transfer. In this study we investigated the cause of these low titers. We compared the mRNA and protein expression levels of HN and F in transfected cells and in cells infected with wild-type HPIV3. Transfected cells contained similar levels of HN and F cytosolic mRNA, but fewer cell-surface FIN and F proteins (3.8- and 1.3-fold less, respectively), than cells infected with wild-type HPIV3. To increase expression of HN in transfected cells, we codon-optimized HN and used it to transfect lentivirus producer cells. Cell surface expression of HN, as well as the amount of HN incorporated into virus particles, increased two- to threefold. Virus titers increased 1.2- to 6.4-fold, and the transduction efficiency of polarized MDCK cells via their apical surfaces increased 1.4-fold. Interestingly, even though codon optimization improved the expression levels of FIN and virus titers, we found that HPIV3 pseudotyped viruses contained about 14-fold fewer envelope proteins than lentiviruses pseudotyped with the amphotropic envelope protein. Taken together, our findings suggest that titers are low, not because virus producer cells express levels of HPIV3 envelope proteins that are too low, but because too few of these proteins are incorporated by the lentiviruses for them to be able to efficiently transduce cells.