화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.99, No.5, 1241-1249, 2008
Internal transport properties of macroporous sugar polyacrylate hydrogels: Microsphere diffusion described by phenomenological laws
We have determined the internal transport properties of heterogeneous, macroporous hydrogels based on the regioregular sugar polyacrylate poly(6-acryloyl-beta-O-methyl-galactopyranoside). This was accomplished by measuring the diffusive flux of variously sized polystyrene microspheres and combining these results with solutions of phenomenological transport laws (the Navier-Stokes equations and Fick's Law with an assumption of first-order irreversible sphere capture by the gel polymer). This enabled calculation of gel properties such as average pore diameters (ca. 11.76 mu m) and the diffusivities of the polystyrene spheres in the gel. These values range from 76% to 83% of that in free solution and correlate closely with the equilibrium solution content of the gel (82.3%). This approach has also enabled calculation of the sphere capture 10(-3) rates (2.4 x to 9.6 x 10(-5) s(-1)). These low capture rates indicate that the gel is extremely non-adhesive towards the spheres, and a linear correlation with sphere form drag area (r(2) = 1) was found. The pore sizes of the hydrated gel were observed via DIC light microscopy and the visible effective diameters corresponded very closely to the calculated values (11.66 vs. 11.76 mu m). The diffusion/capture of inert spheres in the hydrogel can thus be described in a non-destructive manner by straightforward application of phenomenological transport laws. This result is significant in that these laws were intended to describe macroscopic ensembles of very large numbers of particles in continuous media, not small numbers (i.e., hundreds) in discontinuous media.