화학공학소재연구정보센터
Biotechnology Letters, Vol.30, No.3, 497-502, 2008
Lipase-catalyzed selective synthesis of monolauroyl maltose using continuous stirred tank reactor
Monolauroyl maltose was synthesized by an immobilized lipase that catalyzed condensation of maltose and lauric acid in acetone using a batch reactor or a continuous stirred tank reactor. Mono- and di-lauroyl maltoses were identified by FT-IR, H-1 NMR, C-13 NMR and MS. Monolauroyl maltose was selectively synthesized in a continuous stirred tank reactor and no diester was detected. The highest concentration of monolauroyl maltose at 28 mmol/l was obtained in 250 ml acetone when maltose was added at 4 g/d and the molar ratio of lauric acid to maltose was fixed at 4:1 at a flow rate of 0.15 ml/min for both influx and effluent without supplement of fresh molecular sieve.