Canadian Journal of Chemical Engineering, Vol.85, No.6, 808-816, 2007
Effects of viscous dissipation on heat transfer between an array of long circular cylinders and power law fluids
The free surface model has been combined with the equations of motion and of thermal energy to investigate the role of viscous dissipation on heat transfer between banks of long cylinders and power law (shear-thinning and shear-thickening) fluids. The equations of motion cast in the stream function/vorticity formulation have been solved numerically using a second-order accurate finite difference method to obtain extensive information on the behaviour of local and surface-averaged Nusselt numbers over a range of Reynolds numbers 1 -500, for a wide range of power law indices (0.4 <= n <= 2.0), Brinkman numbers (0 <= Br <= 5) and Prandtl numbers (Pr= 1, 1000) at two representative solid volume fractions corresponding to the porosities of e = 0.4 and 0.9. Two different thermal boundary conditions are considered at the cylinder surface: constant temperature (CT) and constant heat flux (CHF). The results presented herein provide a fundamental knowledge about the influence of viscous dissipation on the heat transfer characteristics. The results reported herein further show that the effect of Brinkman number on heat transfer is strongly conditioned by the thermal boundary condition, Prandtl number and the power law index.