Chemical Engineering Science, Vol.63, No.7, 1941-1949, 2008
Hydrodynamics and mass transfer in a novel multi-airlifting membrane bioreactor
A novel multiple-airlifting membrane bioreactor is built with four sintered stainless steel tubular filters as the risers and downcomers. This work investigates the hydrodynamics including gas holdup, liquid velocity, liquid circulation and mixing times by aerating different number of risers (one to three) at superficial gas velocities of 0.02-0.07 m/s The mass transfer phenomena, including oxygen mass transfer (k(L)a) and effective molecular diffusivity of lactic and acetic acids through the walls of tubular filters, are also investigated. It is found that gas holdup in individual risers increases linearly with the superficial gas velocity, and performs independently under multiple-airlifting conditions. The vessel-based gas holdup and liquid velocity in downcomer(s) increase with aeration rate of individual risers as well as the number of risers. The liquid velocity in downcomers reaches an upper limit (about 0.6 m/s), because of flow resistance or energy loss of liquid circulation. The oxygen mass transfer coefficient (kLa) is primarily affected by gas holdup and the number of risers, and to some extent influenced by liquid velocity. The novel airlifter configuration results in good liquid mixing in the bioreactor that quickly reaches new steady state in response to a sudden pH change from acid addition. (C) 2008 Elsevier Ltd. All rights reserved.