Chemical Engineering Science, Vol.63, No.8, 2283-2293, 2008
Shortstopping and jet mixers in preventing runaway reactions
Runaway reactions are continuing to be a major problem in the chemical industry (26% of major accidents). One of the main reasons for runaways is power failure. Runaway reactions could be inhibited in two ways: by the addition of cold diluents and by the addition of an inhibitor (chemical reaction stopper). This technology is called shortstopping. After a power failure, the process of adding an inhibiting agent and mixing it with the reactor contents becomes a major problem in the shortstopping process. Jets or impellers, driven by a small generator, however, can be used for mixing the inhibitor with the reactor contents. Dakshinamoorthy et al. [2006. CFD simulations of shortstopping runaway reactions in vessels agitated with impellers and jets. Journal of Loss Prevention in the Process Industries 19, 570-581] compared the efficiency of using jet mixers versus impeller stirred vessels in shortstopping runaway reactions. On the basis of equal power consumption, this comparative study showed that jet mixers are ineffective when used for shortstopping. One needs to identify additional factors, to effectively shortstop when using jet mixers. Due to the hazardous nature of runaway reactions, these factors cannot be determined with tab scale or pilot plant scale experiments. Recent developments with CFD make it possible to carry out virtual experiments. The computational model is solved using FLUENT. Shortstopping studies via the addition of a reaction inhibitor and cold diluent are discussed in detail. The results reported in this study identify the major and minor factors, which contribute to effective shortstopping; i.e., power requirements, locations for adding the inhibitor, the quantity of inhibitor added, rate of the inhibition, the use of cold diluent and the use of multiple nozzles. These results especially demonstrate the value of using CFD simulations in situations that are experimentally prohibitive. (C) 2007 Published by Elsevier Ltd.