Polymer(Korea), Vol.21, No.4, 614-620, July, 1997
1,2-Polybutadiene/3,4-Polyisoprene 블랜드의 전이금속 촉매 화학반응에 의한 상용화
Compatibilization of 1,2- Polybutadiene/3,4-Polyisoprene Blends via Transition-Metal Catalyzed Chemical Reaction
초록
본 연구는 1,2-polybutadiene(1,2-PBu) 및 3,4-polyisoprene(3,4-PI)과 전이금속염, bis(acetonitrile)dichloropalladium(II)(PdCl2) 혼합물의 열적, 기계적 성질에 관한 연구이다. 1,2-PBu 및 3,4-PI를 PdCl2와 함께 THF 용액에서 혼합하면 이들 고분자의 측쇄에 있는 이중결합이 팔라디움에 약하게 배위결합되어 있는 아세토니트릴 리간드를 치환하여 배위 가교 복합체를 형성하게 된다. 이들 고체상의 배위복합체 필름을 시차열분석하여 팔라디움 촉매에 의한 흡열반웅을 확인하였다. 1,2-PBu/PdC12 복합체 필름의 FT-lR 스펙트림을 200 ℃까지 온도 변화하면서 측정하여 화학 가교반응이 일어남을 확인할 수 있었다. 1,2-PBu/3,4-P1/PdC122 3성분계 블렌드에서는 팔라디움이 분자간 배위 가교결합 및 열처리에 의한 분자간 화학 가교반응을 유도하여 상용화 작용이 있음을 알 수 있었다.
This study focuses on the thermal and mechanical properties of 1,2-polybutadiene (1,2-PBu) and 3,4-polyisoprene (3,4-PI) with a transition metal salt, bits (acetonitrile)dichloropalladium(Ⅱ) (PdCl2). Upon mixing in tetrahydrofuran (THF), effective coordination crosslinks are formed because the acetonitrile ligands of the palladium salt are displaced by olefinic pendant groups of the polymers. The palladium-catalyzed exothermic chemical reaction in solid films was characterized via differential calorimetric and differential thermal analysis High-temperature infrared experiments up to 200 ℃ identify irreversible chemical crosslinking reaction that occurs in complexes of 1,2-PBu and palladium chloride. If the d8 square-planar palladium salt coordinates to olefinic side groups in both 1,2-PBu and 3,4-PI, then transition-metal catalyzed dimerization reaction should induce compatibility. Transition-metal coordination and thermally induced palladium catalyzed dimerization reactions in 1,2-PBu/3,4-PI/PdCl2 ternary blend system provide a new route to compatibilize industrially important diene-based polymers.
Keywords:1,2-PBu;3,4-PI;PdCl2;coordination crosslinks;transition-metal catalyzed dimerization reaction;compatibility
- Dunn JR, Rubber Chem. Technol., 49, 978 (1976)
- Corish PJ, Powell BDW, Rubber Chem. Technol., 47, 481 (1974)
- Corish PJ, Rubber Chem. Technol., 40, 324 (1967)
- Chung GC, Kornfield JA, Smith SD, Macromolecules, 27(4), 964 (1994)
- Cohen RE, Ramos AR, Macromolecules, 12, 131 (1979)
- Cohen RE, Ramos AR, Polym. Eng. Sci., 17, 639 (1977)
- Miller JB, McGrath KJ, Roland CM, Trask CA, Garroway AN, Macromolecules, 23, 4543 (1990)
- Roos J, Toporowski PM, Macromolecules, 25, 3454 (1992)
- Trask CA, Roland CM, Macromolecules, 22, 256 (1989)
- Nir MM, Cohen RE, Rubber Chem. Technol., 66, 295 (1993)
- Kawahara S, Akiyama S, Ueda A, Polym. J., 21, 221 (1989)
- Kawahara S, Akiyama S, Polym. J., 22, 361 (1990)
- Kawahara S, Akiyama S, Polym. J., 23, 7 (1991)
- Roovers J, Toporowski PM, Macromolecules, 25, 1096 (1992)
- Yoshimura N, Fujimoto K, Rubber Chem. Technol., 42, 1009 (1969)
- Belfiore LA, Bosse F, Das P, Polym. Int., 36, 165 (1995)
- Mani R, Mahadevan V, Srinivanvasan M, Br. Polym. J., 22, 177 (1990)
- Sherrington DC, Tang HG, Macromol. Symp., 80, 193 (1994)
- Belfiore LA, McCurdie MP, ACS Proceedings; Division of Polymeric Materials Science and Engineering, 70, 433 (1994)
- Belfiore LA, Mccurdie MP, J. Polym. Sci. B: Polym. Phys., 33(1), 105 (1995)
- Lee JY, Belfiore LA, Bull. Korean Chem. Soc., 17, 826 (1996)