화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.4, 648-656, July, 1997
천연고무 컴파운드의 물리적 특성에 미치는 가교고무 분말의 함량 및 입자크기 영향
Effect of Loading and Particle Size of Rubber Powder Vulcanizate on Physical Preperties of Natrral Rubber Compound
초록
입자크기가 다른 가황고무 분말을 0∼40phr로 변량하여 천연고무 컴파운드에 첨가하여 가황특성, 유변학적 특성 및 기계적 성질을 조사하였다. 입자크기의 영향을 검토하기 위해 크기가 다른 5가지 가교고무 분말을 그리고 탈황에 따른 영향을 조사하기 위해 타이어용 고무 컴파운드에 사용되는 전형적인 탈황고무 분말을 선택하였다 고무분말의 평균입자 크기는 70∼2000 ㎛ 범위로 분석되었다. 고무분말 함량증가에 따라 가황특성 중 최대토오크, 가황개시 시간, 최적 가황시간은 감소한 반면, 최소토오크는 증가하였다. 또한 분말함량 증가에 따라 Mooney 점도와 전단점도는 선형적으로 증가하였고, 다이팽윤은 오히려 감소하였다. 인장강도, 반발탄성은 분말함량 증가에 따라 감소하였고, tan δ과 발열은 증가하였으며, 분말입자가 클수록 이러한 영향은 크게 나타났다.
The cure characteristics. rheological property, and some mechanical properties of natural rubber (NR) compounds containing different sizes of rubber powder vulcanizates were investigated with varying the contents of powder from 0 to 40 phr. Five different sizes of rubber powders were selected to see the effect of particle size. A typical reclaimed rubber powder was also used to see the reclaiming effect. The average particle size of rubber powders ranged from 70 to 2000 ㎛. In the cure characteristics, as the powder content increased, the maximum torque, cure initiation time, and optimum cure time decreased, while minimum torque increased. As the powder content increased, the gooney viscosity and the shear viscosity of the compounds increased linearly, whereas the die swell decreased. The tensile strength at break and resilience decreased considerably, while tan f and heat build-up increased with the increased powder content, and the effect was greatly enhanced for larger particles of rubber powders.
  1. Serumgard JR, International Rubber Conference '96, June 17-21, Manchester, England (1996)
  2. Dufton PW, International Rubber Conference'96, June 17-21, Manchester, England (1996)
  3. Fehrle M, International Rubber Conference '96, June 17-21, Manchester, England (1996)
  4. Wm M, Rubber World, 206(3), 25 (1992)
  5. Lynch J, LaGrone BD, The 130th Meeting of the Rubber Division, American Cheical Society, October 7-10, Atlanta, Georgia, U.S.A. (1986)
  6. Smith FG, the 130th Meeting of the Rubber Division, American Chemical Society, October 7-10, Atlanta, Georgia, U.S.A. (1986)
  7. Warner WC, Rubber Chem. Technol., 67, 559 (1994)
  8. Isayev AI, Chen J, Tukachinsky A, Rubber Chem. Technol., 68, 267 (1995)
  9. Nicholas PP, Rubber Chem. Technol., 55, 1499 (1982)
  10. Stafford WE, Wright RA, Sargent D, Rubber Chem. Technol., 30, 87 (1957)
  11. Stafford WE, Allcroft JB, Sargent DT, Rubber Chem. Technol., 31, 202 (1958)
  12. Swor RA, Jensen L, Budzol M, Rubber Chem. Technol., 53, 1215 (1980)
  13. Phadke AA, Bhattacharya AK, Chakraborty SK, De SK, Rubber Chem. Technol., 56, 726 (1983)
  14. Phadke AA, Chakraborty SK, De SK, Rubber Chem. Technol., 57, 19 (1984)
  15. Gibala D, Hamed G, Rubber Chem. Technol., 67, 636 (1994)
  16. Burlet R, Dierkes W, International Rubber Conference'96, June 17-21, Manchester, England (1996)
  17. Burgoyne MD, Leaker GR, Krekic Z, Rubber Chem. Technol., 49, 375 (1976)
  18. Gibala D, Laohapisitpanich K, Thomas D, Hamed GR, Rubber Chem. Technol., 69, 115 (1996)
  19. Rabinowitch B, Z. Phys. Chem., A145, 1 (1929)
  20. Mooney M, J. Rheol., 2, 210 (1931) 
  21. Mooney M, Ind. Eng. Chem. Anal. Ed., 6, 147 (1957) 
  22. Nah C, Cho S, Lee KJ, Jeon DJ, Cho CT, Kang S, Polym.(Korea), 20(4), 547 (1996)
  23. Einstein A, Ann. Phys., 19, 289 (1906)
  24. Guth E, Gold O, Phys. Rev., 53, 322 (1938)
  25. An Operation Manual of Monsanto Processability Tester (MPT) of Monsanto Instrument Co., U.S.A.
  26. Han CD, "Rheology in Polymer Processing," chap. 5, Academic Press, Inc. (1976)
  27. Han CD, "Rheology in Polymer Processing," chap. 12, Academic Press, Inc. (1976)
  28. Burford RP, Pittolo M, Rubber Chem. Technol., 55, 1233 (1982)
  29. Nah C, Kaang S, J. Polym. Eng., in press
  30. An Operational Manual of Monsanto Cure Rheometer (R-100) of Monsanto Instrument Co., U.S.A.
  31. Gent AN, Lai SM, J. Polym. Sci. B: Polym. Phys., 32(8), 1543 (1994)