화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.4, 667-673, July, 1997
탄화규소 세라믹 고분자 공중합체의 구조특성에 관한 연구
The Study on the Structure of Silicon Carbide Cermic Copolymer
초록
폴리실란 랜덤공중합체인 poly(dimethyl-co-diphenyl) silane은 톨루엔에서 금속나트륨을 촉매로 축합중합에 의하여 합성되었다. 이 공중합체는 β-SiC를 제조하기 위한 세라믹 고분자 전구체이다. 열처리와 가교과정을 거친 폴리실란을 질소환경 하에서 800℃ 이상에서 열분해하여 탄화규소를 제조하였다. 열분해 온도의 변화에 따른 탄화규소의 구조변화와 물성은 FT-IR, 열중량 분석, 그리고 X-선 회절을 통하여 조사하였다. 탄화규소로 변화되는 과정에서 열분해 온도의 증가와 함께 유기구조에서 무기구조로 전환되었다. 또한 X-선 회절실험에서 탄화규소의 구조는 열분해 온도가 800 ℃와 1000 ℃일 때는 거의 무정형을 나타내었고, 열분해 온도가 1200 ℃와 1400 ℃일때는 결정화되어 탄화규소 결정과 관계되는 피크들이 나타났다. 결정화된 탄화규소의 결정구조가 입방정체임을 확인하였다. 또한 온도증가와 함께 피크 너비가 점점 좁아지는 것을 보여주고 있는데, 이것은 열분해 온도를 증가시킴에 따라 탄화규소 결정들이 성장하고 있음을 나타낸다.
Polysilane random copolymer, poly(dimethyl-co-diphenyl) silane, was synthesized by condensation polymerization with sodium metal in toluene. This copolymer is preceramic polymer of the β-SiC. After thermal treatment and crosslinking, this was pyrolyzed above 800 ℃ in a nitrogen atmosphere to make black β-SiC. Different pyrolysis temperatures were applied, and the structural changes and properties of the β-SiC were observed with FT-IR, thermal analysis, and X-ray diffraction. It was observed that organic sturcture of the β-SiC was completely converted to inorganic sturcture with pyrolysis. The β-SiC pyrolyzed at 800 ℃ and 1000 ℃ was amorphous, but the β-SiC pyrolyzed at 1200 ℃ and 1400 ℃ showed crystalline peaks observed with their 2 θ=35°, 60°, and 72°The crystal system of β-SiC was found to be cubic, and it was also observed that the β-SiC crystals grow with the increase of pyrolysis temperature.
  1. Mark JE, Allcock HR, West R, "Inorganic Polymers," Chap. 1, Academic, New York (1990)
  2. Allcock HR, Lampe FW, "Contemporary Polymer Chemistry," 2nd ed., Prentice Hall, New Jersey (1992)
  3. Kipping FS, J. Chem. Soc., 125, 2291 (1924)
  4. Yajima S, Hayashi J, Omori M, Chem. Lett., 931 (1975) 
  5. Yajima S, Omori M, Hayashi J, Okamura K, Matsuzawa T, Liaw C, Chem. Lett., 551 (1976) 
  6. Yajima S, Hasegawa Y, Okamura K, Matsuzawa T, Nature, 273, 525 (1978) 
  7. Yajima S, Okamura K, Matsuzawa T, Hasegawa Y, Shishido T, Nature, 279, 706 (1979) 
  8. Yajima S, Okamura K, Tanaka J, Hayase T, J. Mater. Sci., 16, 3033 (1981) 
  9. West R, Hench LL, Ulrich DR, "Ultrastructure Processing and Ceramic, Glasses and Composites," p. 235, John Wiley & Sons, New York (1984)
  10. West R, Carberry E, Science, 189, 179 (1975) 
  11. West R, David LD, Djurovich PI, Yu H, Sinclair R, Ceram. Bull., 62(8), 899 (1983)
  12. Yajima S, Hasegawa Y, Hayashi J, Ilmura M, J. Mater. Sci., 13, 2569 (1978) 
  13. Ichikawa H, Machino F, Mitsuno S, Ishikawa T, Okamura K, Hasegawa Y, J. Mater. Sci., 21, 4352 (1986) 
  14. Yajima S, Okamura K, Hayashi J, Chem. Lett., 1209 (1975) 
  15. Hasegawa Y, Ilmura M, Yajima S, J. Mater. Sci., 15, 720 (1980) 
  16. Decottingnies M, Phalippoou J, Zarzycki J, J. Mater. Sci., 13, 2605 (1978) 
  17. Hasegawa Y, Okamura K, J. Mater. Sci., 18, 3633 (1983) 
  18. Cullity BD, "Elements of X-ray Diffraction," 2nd ed., p. 102, Addison, Wesley (1978)