Applied Surface Science, Vol.254, No.11, 3331-3338, 2008
S180 cell growth on low ion energy plasma treated TiO2 thin films
X-ray photoelectron spectroscopy (XPS) was used to characterise the effects of low energy (< 2 eV) argon ion plasma surface modification of TiO2 thin films deposited by radio frequency (RF) magnetron sputter system. The low energy argon ion plasma surface modification of TiO2 in a two-stage hybrid system had increased the proportion of surface states of TiO2 as Ti3+. The proportion of carbon atoms as alcohol/ether (C-OX) was decreased with increase the RF power and carbon atoms as carbonyl (C=O) functionality had increased for low RF power treatment. The proportion of C(=O) OX functionality at the surface was decreased at low power and further increase in power has showed an increase in its relive proportion at the surface. The growth of S180 cells was observed and it seems that cells are uniformly spreads on tissue culture polystyrene surface and untreated TiO2 surfaces whereas small-localised cell free area can be seen on plasma treated TiO2 surfaces which may be due to decrease in C(=O) OX, increase in C=O and active sites at the surface. A relatively large variation in the surface functionalities with no change in the surface roughness was achieved by different RF plasma treatments of TiO2 surface whereas no significant change in S180 cell growth with different plasma treatments. This may be because cell growth on TiO2 was mainly influenced by nano-surface characteristics of oxide films rather than surface chemistry. (c) 2007 Elsevier B. V. All rights reserved.