Biomacromolecules, Vol.9, No.3, 1064-1070, 2008
Folate-conjugated thermoresponsive block copolymers: Highly efficient conjugation and solution self-assembly
A combination of controlled radical polymerization and azide-alkyne click chemistry was employed to prepare temperature-responsive block copolymer micelles conjugated with biological ligands with potential for active targeting of cancer tissues. Block copolymers of N-isopropylacrylamide (NIPAM) and N,N-dimethylacrylamide (DMA) were synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization with an azido chain transfer agent (CTA). Pseudo-first-order kinetics and linear molecular weight dependence on conversion were observed for the RAFT polymerizations. Cu(I)-catalyzed coupling with propargyl folate resulted in folic acid residues being efficiently conjugated to the alpha-azido chain ends of the homo and block copolymers. Temperature-induced self-assembly resulted in aggregates capable of controlled release of a model hydrophobic drug. Cu(I)-catalyzed azide-alkyne cycloaddition has proven superior to conventional methods for conjugation of biological ligands to macromolecules, and the general strategy presented herein can potentially be extended to the preparation of folate-functionalized assemblies with other stimuli susceptibility (e.g., pH) for therapeutic and imaging applications.