화학공학소재연구정보센터
Current Microbiology, Vol.56, No.4, 403-407, 2008
Rhizoremediation of cadmium soil using a cadmium-resistant plant growth-promoting rhizopseudomonad
Three pseudomonad strains (MKRh1, MKRh3, and MKRh4) isolated from rhizospheres showed a high growth potential in the presence of cadmium, with a minimal inhibitory concentration of 7 mM for cadmium chloride (CdCl2). Among them, isolate MKRh3 was specifically chosen as the most favorable cadmium-resistant plant growth-promoting rhizobacterium based on its higher 1-aminocyclopropane carboxylic acid deaminase activity, siderophore production, phosphate solubilization, and auxin synthesis and the in vivo growth increment of black gram plants. 16S ribosomal RNA gene sequencing identified MKRh3 as Pseudomonas aeruginosa. The effect of cadmium on black gram plants was studied in soil amended with a gradient of CdCl2 concentration and the toxicity was evident from stunted growth, poor rooting, and cadmium accumulation. Application of isolate MKRh3 by seed coating overcomes the cadmium toxicity; plants showed lessened cadmium accumulation, extensive rooting, and enhanced plant growth. Further research and development of this promising innate strategy for scale-up to higher-efficiency and large-scale application will be a potent tool to prevent accumulation of cadmium in plants, thereby ensuring food security for humans.