Polymer(Korea), Vol.21, No.6, 1053-1058, November, 1997
에틸렌-아크릴산 공중합체/폴리에틸렌글리콜 블렌드의 상용성 연구
Miscibility Study of Poly(ethylene-co-acrylic acid)Poly(ethylene glycol)Blends
초록
시차주사열분석(DSC) 및 푸리에변환 적외선(FT-IR) 분광분석을 이용하여 생분해성 폴리에틸렌글리콜(PEG)과 8.9mole%의 아크릴산을 함유하는 에틸렌-아크릴산 공중합체 (EAA)블렌드의 상용성을 조사하였다. 블렌드내의 결정성 PEG의 용점강하 현상이 일어났으며, Hoffman-Weeks 플롯으로부터 블렌드의 평형융점을 구하였다. PEG의 결정용융온도 이상인 70 ℃에서의 블렌드의 상호작용 파라미터, X12=-0.54를 Nish-Wang식을 이용하여 구하였다. EAA/PEG 블렌드의 열역학적 상용성의 원인이 되는 분자간 수소결합이 아크릴산 카르복실기와 에테르기 사이에서 형성됨을 FT-IR 분석에 의하여 확인하였다.
The miscibility of biodegradable poly(ethylene glycol) (PEG) blends with poly (ethylene-co-acrylic acid)(EAA) containing 8.9 mole% acrylic acid was studied by differential scanning calorimetry(DSC) and Fourier transform infrared (FT-IR) spectroscopy The melting point depression of crystalline PEG in the blend was observed. The equilibrium melting points of the blends were determined by the Hoffman-Weeks plot. A negative interaction parameter value (X12=-0.54) of the blend at the temperature above the melting point (70 ℃) of PEG was estimated by using Nishi-Wang equation. Intermolecular hydrogen bonding interactions involving carboxylic acid group and ether oxygen which are responsible for the thermodynamic miscibility of the EAA/PEG blends are identified by FT-IR analysis. The results of both thermal and infrared spectroscopic analysis have substantiated that the EAA/PEG blends are highly mixed at the molecular level.
Keywords:biodegradable poly(ethylene glycol);poly(ethylene-co-acrylic acid);negative interaction parameter;hydrogen bonding interractions;thermodynamic miscibility
- Paul DR, Newman S, "Polymer Blends," Academic Press, New York (1978)
- Olabisi O, Robeson LM, Shaw MT, "Polymer-Polymer Miscibility," Academic Press, New York (1979)
- Utracki LA, "Polymer Alloys and Blends," Oxford University Press, New York (1990)
- Coleman MM, Graf J, Painter PC, "Specific Interactions and the Miscibility of Polymer Blends," Technomic Publishing Co. Inc., Lancaster, PA (1991)
- Moskala EJ, Varnell DF, Coleman MM, Polymer, 26, 228 (1985)
- Smith KL, Winslow AE, Peterson DE, Ind. Eng. Chem., 51, 1361 (1959)
- Robeson LM, Hale WF, Merian CN, Macromolecules, 14, 1644 (1981)
- Kumagai Y, Doi Y, Polym. Degrad. Stabil., 35, 87 (1992)
- Kumagai Y, Doi Y, Polym. Degrad. Stabil., 36, 241 (1992)
- Kumagai Y, Doi Y, Polym. Degrad. Stabil., 37, 253 (1992)
- Gassner F, Owens AJ, Polymer, 33, 2508 (1992)
- Avella M, Martuscelli E, Polymer, 29, 1731 (1988)
- Swanson CL, Shogren RL, Fanta GF, Iman SH, J. Environ. Polym. Degrad., 1, 155 (1993)
- Maddever WJ, "Handbook of Polymer Degradation," eds. by S.H. Hamid, M.B. Amin, and A.G. Maadhah, p. 365, Marcel Dekker, Inc., New York (1992)
- Otey FH, Mark AM, Mehltretter CL, Russell CR, Ind. Eng. Chem. Prod. Res. Dev., 13, 90 (1974)
- Otey FH, Westhoff RP, Doane WM, Ind. Eng. Chem. Prod. Res. Dev., 19, 592 (1980)
- Otey FH, Westhoff RP, Doane WM, Ind. Eng. Chem. Res., 26, 1659 (1987)
- Shogren RL, Thompson AR, Green RV, Gordon SH, Cote G, J. Appl. Polym. Sci., 42, 2279 (1991)
- Fanta GF, Swanson CL, Shogren RL, J. Appl. Polym. Sci., 44, 2037 (1992)
- Swanson CL, Fanta GF, Slach JH, J. Appl. Polym. Sci., 49, 1683 (1993)
- Ogata K, Kawai F, Fukaya M, Tani Y, J. Ferment. Technol., 53, 757 (1975)
- Haines JR, Alexander M, Appl. Microbiol., 29, 621 (1975)
- Hoffman JD, Weeks JJ, J. Chem. Phys., 42, 4301 (1965)
- Nishi T, Wang TT, Macromolecules, 8, 909 (1975)
- Jo WH, Lee CH, Macromolecules, 23, 2261 (1991)
- Lee JY, Painter PC, Coleman MM, Macromolecules, 21, 346 (1988)
- Bailey FE, Koleske JV, "Poly(ethylene oxide)," Academic Press, New York (1976)
- Rao GR, Castiglioni CC, Gussoni M, Zerbi G, Polymer, 26, 811 (1985)