화학공학소재연구정보센터
Polymer(Korea), Vol.21, No.6, 1053-1058, November, 1997
에틸렌-아크릴산 공중합체/폴리에틸렌글리콜 블렌드의 상용성 연구
Miscibility Study of Poly(ethylene-co-acrylic acid)Poly(ethylene glycol)Blends
초록
시차주사열분석(DSC) 및 푸리에변환 적외선(FT-IR) 분광분석을 이용하여 생분해성 폴리에틸렌글리콜(PEG)과 8.9mole%의 아크릴산을 함유하는 에틸렌-아크릴산 공중합체 (EAA)블렌드의 상용성을 조사하였다. 블렌드내의 결정성 PEG의 용점강하 현상이 일어났으며, Hoffman-Weeks 플롯으로부터 블렌드의 평형융점을 구하였다. PEG의 결정용융온도 이상인 70 ℃에서의 블렌드의 상호작용 파라미터, X12=-0.54를 Nish-Wang식을 이용하여 구하였다. EAA/PEG 블렌드의 열역학적 상용성의 원인이 되는 분자간 수소결합이 아크릴산 카르복실기와 에테르기 사이에서 형성됨을 FT-IR 분석에 의하여 확인하였다.
The miscibility of biodegradable poly(ethylene glycol) (PEG) blends with poly (ethylene-co-acrylic acid)(EAA) containing 8.9 mole% acrylic acid was studied by differential scanning calorimetry(DSC) and Fourier transform infrared (FT-IR) spectroscopy The melting point depression of crystalline PEG in the blend was observed. The equilibrium melting points of the blends were determined by the Hoffman-Weeks plot. A negative interaction parameter value (X12=-0.54) of the blend at the temperature above the melting point (70 ℃) of PEG was estimated by using Nishi-Wang equation. Intermolecular hydrogen bonding interactions involving carboxylic acid group and ether oxygen which are responsible for the thermodynamic miscibility of the EAA/PEG blends are identified by FT-IR analysis. The results of both thermal and infrared spectroscopic analysis have substantiated that the EAA/PEG blends are highly mixed at the molecular level.
  1. Paul DR, Newman S, "Polymer Blends," Academic Press, New York (1978)
  2. Olabisi O, Robeson LM, Shaw MT, "Polymer-Polymer Miscibility," Academic Press, New York (1979)
  3. Utracki LA, "Polymer Alloys and Blends," Oxford University Press, New York (1990)
  4. Coleman MM, Graf J, Painter PC, "Specific Interactions and the Miscibility of Polymer Blends," Technomic Publishing Co. Inc., Lancaster, PA (1991)
  5. Moskala EJ, Varnell DF, Coleman MM, Polymer, 26, 228 (1985) 
  6. Smith KL, Winslow AE, Peterson DE, Ind. Eng. Chem., 51, 1361 (1959) 
  7. Robeson LM, Hale WF, Merian CN, Macromolecules, 14, 1644 (1981) 
  8. Kumagai Y, Doi Y, Polym. Degrad. Stabil., 35, 87 (1992) 
  9. Kumagai Y, Doi Y, Polym. Degrad. Stabil., 36, 241 (1992) 
  10. Kumagai Y, Doi Y, Polym. Degrad. Stabil., 37, 253 (1992) 
  11. Gassner F, Owens AJ, Polymer, 33, 2508 (1992) 
  12. Avella M, Martuscelli E, Polymer, 29, 1731 (1988) 
  13. Swanson CL, Shogren RL, Fanta GF, Iman SH, J. Environ. Polym. Degrad., 1, 155 (1993) 
  14. Maddever WJ, "Handbook of Polymer Degradation," eds. by S.H. Hamid, M.B. Amin, and A.G. Maadhah, p. 365, Marcel Dekker, Inc., New York (1992)
  15. Otey FH, Mark AM, Mehltretter CL, Russell CR, Ind. Eng. Chem. Prod. Res. Dev., 13, 90 (1974) 
  16. Otey FH, Westhoff RP, Doane WM, Ind. Eng. Chem. Prod. Res. Dev., 19, 592 (1980) 
  17. Otey FH, Westhoff RP, Doane WM, Ind. Eng. Chem. Res., 26, 1659 (1987) 
  18. Shogren RL, Thompson AR, Green RV, Gordon SH, Cote G, J. Appl. Polym. Sci., 42, 2279 (1991) 
  19. Fanta GF, Swanson CL, Shogren RL, J. Appl. Polym. Sci., 44, 2037 (1992) 
  20. Swanson CL, Fanta GF, Slach JH, J. Appl. Polym. Sci., 49, 1683 (1993) 
  21. Ogata K, Kawai F, Fukaya M, Tani Y, J. Ferment. Technol., 53, 757 (1975)
  22. Haines JR, Alexander M, Appl. Microbiol., 29, 621 (1975)
  23. Hoffman JD, Weeks JJ, J. Chem. Phys., 42, 4301 (1965) 
  24. Nishi T, Wang TT, Macromolecules, 8, 909 (1975) 
  25. Jo WH, Lee CH, Macromolecules, 23, 2261 (1991)
  26. Lee JY, Painter PC, Coleman MM, Macromolecules, 21, 346 (1988) 
  27. Bailey FE, Koleske JV, "Poly(ethylene oxide)," Academic Press, New York (1976)
  28. Rao GR, Castiglioni CC, Gussoni M, Zerbi G, Polymer, 26, 811 (1985)