화학공학소재연구정보센터
Polymer(Korea), Vol.22, No.2, 217-222, March, 1998
첨가제 및 공중합을 이용한 고분자량 PPS의 합성 및 물성
Synthesis of High Molecular Weight PPS by Copolymerization and Additives
초록
고분자량의 poly(p-phenylene sulfide) (PPS)의 합성을 위하여 1,4-dichlorobenzene (DCB)에 소량의 3관능성 단량체 1,2,4-trichlorobenzene (TCB)를 공단량체로 하여 sodium sulfide와의 공중합 및 sodium acetate 또는 lithium acetate를 첨가제로 NMP용매에 투입하여 DCB와 sodium sulfide로부터 PPS를 합성하였다. 우선 3관능성 단량체를 사용한 공중합에서는 TCB의 투입량이 증가함에 따라 분자량 (Mw)이 증가하였으며 가교화가 이루어지지 않고 210℃에서 1-chloronaphthalene에 완전히 녹는 가지형 PPS (Mw=144000 g/mo1)를 합성할 수 있는 TCB의 최적 투입량은 2.0mol%로 나타났다. 또 TCB를 이용한 가지형 구조의 PPS는 Tg의 증가로 내열성이 향상되었으며 Tm의 감소로 가공성이 향상되었다. 그리고 alkali metal carboxylate계 첨가제를 통한 선형 PPS 단독 중합체의 합성에서는 sodium acetate의 경우 투입량이 sodium sulfide 1 mole대비 0.3 mole일 때 분자량이 35000 g/mol로 최고치를 나타내었으며 lithium acetate를 사용한 경우에는 투입량이 0.5mole일 때 분자량이 21500g/mo1로 나타났으며 sodium acetate가 lithium acetate보다 분자량 증가와 수율 측면에서 효과가 큼을 알 수 있었다.
For the synthesis of high molecular weight poly(p-phenylene sulfide), PPS, sodium sulfide was copolymerized with 1,4-dichlorobenzene (DCB) and a small amount of 1,2,4-trichlorobenzene (TCB). In another approach sodium acetate or lithium acetate was incorporated into NMP solvent as additive for the homopolymerization of DCB and sodium sulfide. In the copolymerization utilizing trifunctional TCB comonomer the highest molecular weight of a branched type PPS (MW=144000 g/mol) which was still completely soluble in lchloronaphthalene solvent at 210℃ was obtained at TCB content of 2 mol% in DCB/TCB mixture. The resulting branched type PPS sample showed higher Tg and lower Tm than homo-PPS sample prepared under similiar condition. In the alkali metal carboxylate additive method, the highest Mw's of homo-PPS were 35000 g/mol with 0.3 mol of sodium acetate as additive (based on 1 mol of sodium sulfide) and 21500 g/mo1 with 0.5 mol of lithium acetate. respectively. Sodium acetate was more effective than lithium acetate as additive in the PPS polymerization from the view point of yield and Mw of PPS.
  1. Margolis JM, "Engineering Thermoplastics," Marcel Dekker (1985)
  2. Sandler SR, Karo W, "Polymer Synthesis," vol. 3, Academic Press (1980)
  3. Tsuchida E, Nishide H, Yamamoto K, Yoshida S, Macromolecules, 20, 2030 (1987) 
  4. Tsuchida E, Nishide H, Yamamoto K, Yoshida S, Macromolecules, 20, 2315 (1987) 
  5. Tsuchida E, Suzuki F, Shouji E, Yamamoto K, Macromolecules, 27(4), 1057 (1994) 
  6. Fagerburg DR, Watkins JJ, Lawrence PB, Macromolecules, 24, 4033 (1991) 
  7. Wang YF, Hay AS, Macromolecules, 29(14), 5050 (1996) 
  8. Edmonds JT, Hill HW, U.S. Patent, 3,354,129 (1967)
  9. Rohlfing RG, U.S. Patent, 3,717,620 (1973)
  10. Wejchan-Judek M, Perkowska B, Polym. Degrad. Stabil., 38, 261 (1992) 
  11. Campbell RW, Scoggins LE, U.S. Patent, 3,869,434 (1975)
  12. Campbell RW, U.S. Patent, 3,966,688 (1976)
  13. Lee SC, Park LS, Polym.(Korea), 19(5), 685 (1995)
  14. Park LS, Lee SC, Nam JI, J. Polym. Sci. A: Polym. Chem., 34(11), 2117 (1996) 
  15. Park LS, Lee SC, Nam JI, Polymer, 37(8), 1339 (1996) 
  16. Park LS, Lee SC, Lee TH, Jeon JY, Polym.(Korea), 21(3), 369 (1997)
  17. Campbell RW, Yelton HD, U.S. Patent, 4,024,118 (1977)
  18. Campbell RW, Edmonds JT, U.S. Patent, 4,038,259 (1977)
  19. Campbell RW, U.S. Patent, 3,919,177 (1975)
  20. Jeon JY, Park LS, Lee SC, Lee TH, Korea Patent, 97-53766 (1997)