Journal of Colloid and Interface Science, Vol.321, No.1, 96-102, 2008
Structure evolution and optimization in the fabrication of PVA-based activated carbon fibers
The structure and composition evolution of polyvinyl alcohol (PVA) fibers during the fabrication of activated carbon fibers (ACF) by a newly developed method were systematically elucidated. The pore structure of the fibers was significantly influenced by the carbonization and activation conditions. The elemental composition and chemical structure evolution of the fibers during the heat treatment processes were evaluated by elemental analysis, Fourier transform infrared spectrophotometry (FTIR), and X-ray photoelectron spectroscopy (XPS). Crystal structure evolution of the fibers during the heat treatment processes was elucidated by X-ray diffraction (XRD) analysis. Based on these understandings, the process conditions were optimized using an L-9(3)(4) orthogonal array design matrix. Appropriate process parameters for the fabrication of PVA-ACFs were established as carbonizing the dehydrated fiber at 300 degrees C for 60 min, and then lifting the temperature to 900 degrees C with a heating speed of 10 degrees C/min in an inert atmosphere, thereafter keeping the fiber at 900 degrees C for 60 min in an oxidizing atmosphere. (C) 2008 Elsevier Inc. All rights reserved.