Journal of Colloid and Interface Science, Vol.321, No.1, 212-219, 2008
Adsorption of fluorescent R6G dye into organophilic C12TMA laponite films
The absorption and fluorescence properties of rhodamine 6G (R6G) in organophilic laponite (Lap) clay films are studied. For this purpose, organo-Lap clays are synthesized by the incorporation of dodecyltrimethylammonium (C12TMA) as surfactant into the interlayer space of Lap clays. Two organo-Lap clays are prepared: one with moderate surfactant content (around 70% of the total cation-exchange capacity (CEC) of the clay) and a second with a high surfactant loading (about 130% CEC). Supported films are elaborated by the spin-coating technique and characterized by several techniques such as atomic force microscopy, elemental CHN analysis, X-ray diffraction, and thermogravimetry. IR spectroscopy reveals that the intercalation of R6G into organo-Lap films takes place at the detriment of the adsorbed C12TMA molecules. The photophysical properties of R6G monomers in the interlayer space of Lap films are improved by the presence of surfactant molecules. Moreover, organophilic environments can reduce the dye aggregation and favor the formation of fluorescent J-type aggregates, enhancing the fluorescence ability of dye/clay films with high dye contents. This improvement depends on the surfactant content. (C) 2008 Elsevier Inc. All rights reserved.
Keywords:organophilic clays;surfactants;rhodamine 6G adsorption;thin films;absorption and fluorescence properties;dye aggregation