Journal of Colloid and Interface Science, Vol.323, No.2, 223-228, 2008
Desorption of bottle-brush polyelectrolytes from silica by addition of linear polyelectrolytes studied by QCM-D and reflectometry
The possibility of exchanging adsorbed layers of PEO(45)MEMA:METAC-X brush polyelectrolytes (with two different charge densities, 10 and 75 mol%, denoted by X), with poly(MAPTAC), a highly charged linear polyelectrolyte, was investigated by quartz crystal microbalance with dissipation and reflectometry. The studies were conducted on a silica substrate at pH 10, conditions under which only electrostatic interactions are effective in the adsorption process. Based on the results, it was concluded that PEO(45)MEMA:METAC-10 forms an inhomogeneous layer at the interface through which poly(MAPTAC) chains can easily diffuse to reach the surface. On the other hand, the PEO(45)MEMA:METAC-75 layer was not affected when exposed to a poly(MAPTAC) solution. We argue that the observed effect for PEO(45)MEMA: METAC-75 is due to the formation of a homogeneous protective brush layer, in combination with the small difference in surface affinity between the bottle-brush polyelectrolyte and poly(MAPTAC), together with the difficulty of displacing highly charged polyelectrolyte chains once they are adsorbed on the oppositely charged surface. We also use the combination of QCM-D and reflectometry data to calculate the Water content and layer thickness of the adsorbed layers. (c) 2008 Elsevier Inc. All rights reserved.
Keywords:polyelectrolyte;bottle-brush polyelectrolyte;brush polyelectrolyte;comb polyelectrolyte;linear polyelectrolyte;charge density;side chain density;poly(ethylene oxide);QCM-D;reflectometry;silica;adsorbed mass;sensed mass;dissipation;adsorption;desorption