화학공학소재연구정보센터
Journal of Physical Chemistry A, Vol.112, No.16, 3556-3565, 2008
Pd(II) phthalocyanine-sensitized triplet-triplet annihilation from rubrene
Upconverted yellow singlet fluorescence from rubrene (5,6,11,12-tetraphenylnapthacene) was generated from selective excitation (lambda(ex) = 725 nm) of the red light absorbing triplet sensitizer palladium(II) octabutoxypbthalocyanine, PdPc(OBU)(8), in vacuum degassed toluene solutions using a Nd:YAG/OPO laser system in concert with gated iCCD detection. The data are consistent with upconversion proceeding from triplet-triplet annihilation (TTA) of rubrene acceptor molecules. The TTA process was confirmed by the quadratic dependence of the upconverted delayed fluorescence intensity with respect to incident light, measured by integrating the corresponding kinetic traces as a function of the incident excitation power. In vacuum degassed toluene solutions, the red-to-yellow upconversion process is stable under continuous long wavelength irradiation and is readily visualized by the naked eye even at modest laser fluence (0.6 mJ/pulse). In aerated solutions, however, selective excitation of the phthalocyanine sensitizer leads to rapid decomposition of rubrene into its corresponding endoperoxide as evidenced by UV-vis (in toluene), H-1 NMR (in d(6)-benzene), and MALDI-TOF mass spectrometry, consistent with the established reactivity of rubrene with singlet dioxygen. The upconversion process in this triplet sensitizer/acceptor-annihilator combination was preliminarily investigated in solid polymer films composed of a 50:50 mixture of an ethyleneoxide/epichlorohydrin copolymer, P(EO/EP). Films that were prepared, under an argon atmosphere and maintained under this inert environment successfully achieve the anticipated quadratic incident power dependence, whereas air exposure causes the film to deviate somewhat from this dependence. To the best of our knowledge, the current study represents the first example of photon upconversion using a phthalocyanine triplet sensitizer, furthering the notion that anti-Stokes light-producing sensitized TTA appears to be a general phenomenon as long as proper energy criteria are met.