Journal of Physical Chemistry B, Vol.112, No.19, 6274-6281, 2008
Langevin network model of myosin
Langevin mode theory and the coarse-grained elastic network model (ENM) for proteins are combined to yield the Langevin network model (LNM). Hydrodynamic radii of 6 angstrom were assigned to each alpha-carbon on the basis of matching experimental translational and rotational diffusion constants of lysozyme, myoglobin, and hemoglobin with those calculated using a rigid body bead model with hydrodynamic interactions described by the Rome-Prager tensor. LNM analysis of myosin II indicates that all ENM-like modes are overdamped at water viscosities. The low-frequency LNM modes in the pre-power stroke structure (PDB code: 1VOM) are substantially less mixed than the corresponding modes of the post-power stroke structure (1Q5G). Results from a four-bead model of the myosin "lever arm" indicate that coupling between modes increases as the array departs from linearity and are consistent with the results for 1VOM and 1Q5G. The decay times for all overdamped Langevin modes are shorter than the calculated rotational tumbling times found for lysozyme and myosin.