Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.5, 542-546, October, 2009
껍질 형태의 과일폐기물과 하수슬러지를 이용한 회분식 혐기 소화공정에서 메탄 생산
Methane Production Using Peel-type Fruit Wastes and Sewage Sludge in Batch Anaerobic Digestion Process
E-mail:
초록
본 연구는 사과나 귤의 껍질류 과일 폐기물과 하수슬러지가 혼합된 유기성 폐기물을 이용한 회분식 혐기 분해공정에서 메탄 생산이 고찰되었다. 사과껍질 또는 귤껍질이 하수슬러지와 혼합된 기질로 사용되어졌을 때, 3 : 7의 혼합비로 운전한 것이 가장 높은 메탄 생산을 나타내었다. 그러나, 이 비율 이상에서는 사과와 귤 껍질이 함유된 유기산으로 인하여 혼합물의 pH가 8.0에서 4.5∼4.7으로 감소하였으며, 결과적으로 메탄 생산이 낮아졌다. 이러한 실험 결과들은 사과, 귤 껍질과 하수슬러지의 혼합된 회분식 혐기 소화 공정에서 바이오에너지로서 메탄가스의 생산 시스템에 효과적으로 활용될 수 있을 것이다.
Methane production using the mixed organic wastes of peel-type fruit wastes from apple or orange and sewage sludge was investigated in the batch anaerobic degradation process. When apple or orange peels with sewage sludge were used as mixed substrates, higher methane production was achieved under the condition of 3 : 7 (fruit peel : sewage sludge) mixing ratio.
However, above the 3 : 7 mixing ratio, the pH of mixture was decreased from 8.0 to 4.5∼4.7 due to organic acid production from the fruit wastes. Subsequently, methane production was low. The results in this study could be effectively applied to the methane gas production system as a bioenergy in the mixed batch anaerobic digestion process using the peel-type fruit wastes and sewage sludge.
Keywords:methane production;peel-type fruit wastes;sewage sludge;mixing ratio;anaerobic digestion process
- Mata-Alvarez J, Mace S, Llabres P, Bioresour. Technol., 74(1), 3 (2000)
- Parawira W, Murto M, Zvauya R, Mattiasson B, Renewable Energy, 29, 1811 (2004)
- Wyman CE, Goodman BJ, Appl. Biochem. and Biotechnol., 39, 41 (1993)
- JEWELL WJ, CUMMINGS RJ, RICHARDS BK, Biomass Bioenerg., 5(3-4), 261 (1993)
- Mata-Alvarez J, Mace S, Llabres P, Bioresour. Technol., 74(1), 3 (2000)
- Bouallagui H, Touhami Y, Ben Cheikh R, Hamdi M, Process Biochem., 40, 989 (2005)
- Bouallagui H, Torrijos M, Godon JJ, Moletta R, Ben Cheikh R, Touhami Y, Delgenes JP, Hamdi M, Biochemical Eng. J., 21, 193 (2004)
- McMahon KD, Stroot PG, Mackie RI, Raskin L, Wat. Res., 35, 1817 (2001)
- Callaghan FJ, Wase DAJ, Thayanithy K, Forster CF, Bioresour. Technol., 67(2), 117 (1999)
- Jeong TY, Cha GC, Choi SS, Jeon C, J. Ind. Eng. Chem., 13(5), 856 (2007)
- Sawayama S, Inoue S, Yagishita T, Ogi T, Yokoyama SY, J. Ferment. Bioeng., 79(3), 300 (1995)
- Haug RT, Lebrun TJ, Totorici LD, J. Wat. Pollut. Control Fed., 55, 23 (1983)
- Li YY, Nokie T, Wat. Sci. Tech., 26, 857 (1992)
- Choi HB, Hwang KY, Kim YS, Kor. J. Env. Health Soc., 23, 28 (1997)
- Heo JM. Park JA, Son BS, Kor. J. Sanitation, 13, 16 (1998)
- Dubois M, Giles KA, Hamilton JK, Rebers PA, Smith F, Anal Chem., 28, 350 (1956)
- Lowry OH, Rosbrough NJ, Farr AL, Randall RJ, J. Biol. Chem., 123, 265 (1951)
- APHA, American Public Health Association, 19th. New York, USA (1995)
- De Baere L, Wat. Sci. Technol, 41, 283 (2000)
- Converti A, Delborghi A, Zilli M, Arni S, Delborghi M, Bioproc. Eng., 21, 371 (1999)
- Rajeshwari KV, Panth DC, Lata K, Kishore VN, Wates. Manag. Res., 1, 292 (2001)
- Lay JJ, Li YY, Noike T, J. Environ. Eng., 124, 730 (1989)
- Zwietering MH, Jongenburger I, Rombouts FM, Riet KV, Appl. Environ. Microbiol., 56, 1875 (1990)