화학공학소재연구정보센터
Journal of the Korean Industrial and Engineering Chemistry, Vol.20, No.5, 561-564, October, 2009
니들펀치 공정에 의한 캐빈에어필터 여재의 제조
Cabin Air Filter Media Produced by Needle Punching Process
E-mail:
초록
화학적 바인더를 사용하여 활성탄을 고정화시킨 필터 여재(filter media)와 바인더를 사용하지 않고 니들펀치 공정으로 제조한 필터여재를 비교해 보았다. 제조된 콤비네이션 필터는 실차의 내용적과 비슷한 크기의 챔버 내부의 차량용 송풍기에 장착하여 가스제거 효과를 평가하여 보았다. 화학적 바인더를 사용한 캐빈에어필터는 바인더에 의해 활성탄의 흡착기공이 막혀 아세트알데히드 제거 효과가 감소하리라는 예측과 반대로 니들펀칭 공정으로 제조한 필터에 비해 아세트알데히드 1 min 및 30 min 제거효율이 더 높게 나타났다. 니들펀칭 공정에 따르면 활성탄의 소수성결합력(hydrophobic interaction)으로 인해 화학적 바인더를 사용한 캐빈에어필터보다 공극면적(void area)이 상대적으로 더 넓은 것으로 나타났다.
Filter media finely interspersed with activated carbons were prepared by a needle punching process without using chemical binders. Their characteristics were investigated efficiently to abate environmentally harmful gas such as acetaldehyde, and were compared with those of cabin air filter coated with activated carbons by using chemical binders. These combination filters were installed on a vehicle fan placed in a test chamber of capacity similar to the interior volume of a commercially available passenger car, and the efficiency of acetaldehyde abatement was measured as a function of time. The filter utilizing chemical binders showed somewhat better performance for the elimination of acetaldehyde despite the adverse effect of the chemical binder that would clog the micropores of the activated carbons. It turned out that the needle punching process had the activated carbons agglomerated due to hydrophobic interactions, resulting in a relatively larger void area than that of the filter utilizing chemical binders.
  1. Schmidt F, Sager U, Dauber E, Filtration+Separation, 39, 43 (2002)
  2. Reinhardt IH, Filtration+Separation, 42, 18 (2005)
  3. Foster KL, Fuerman RG, Economy J, Larson SM, Rood MJ, Chem., Mater., 4, 1068 (1992)
  4. Lawryk NJ, Weisel CP, Environ. Sci. Technol., 30, 810 (1996)
  5. Schupp T, Bolt HM, Hengstler JG, Toxicology, 206, 461 (2005)
  6. Davis ME, Blicharz AP, Hart JE, Laden F, Garshick E, Smith TJ, Environ. Sci. Technol., 41, 7152 (2007)
  7. Nishino T, Kato K, Imai K, Kato H, Fukumoto K, Denso Technical Review, 10, 65 (2005)
  8. EPA 749-F-94-003a (1994)
  9. Hayashi T, Kumita M, Otani Y, Environ. Sci. Technol., 39, 5436 (2005)
  10. Tam BN, Neumann CM, J. of Environmental Management, 73, 131 (2004)
  11. Zhao XS, Ma Q, Lu GQM, Energy Fuels, 12(6), 1051 (1998)
  12. Lee SO, Kitchin SJ, Harris KDM, Sankar G, Dugal M, Thomas JM, J. Phys. Chem. B, 106(6), 1322 (2002)
  13. Oh WC, Bae JS, J. Korean Ind. Eng. Chem., 14, 821 (2003)
  14. Kim KH, Park JH, J. Korean Ind. Eng. Chem., 11(8), 821 (2000)
  15. Hayashi T, Kumita M, Otani Y, The Society of Chemical Engineers, Japan, 31, 185 (2005)
  16. Cal MP, Rood MJ, Larson SM, Energy Fuels, 11(2), 311 (1997)
  17. Lin RY, Economy J, Appl. Polym. Symp., 21, 143 (1973)
  18. Economy J, Lin RY, Appl. Polym. Symp., 29, 199 (1976)
  19. Chung SC, Ahn BG, Im SS, J. Korean Ind. Eng. Chem., 13(6), 613 (2002)
  20. Lorrain JM, Fortune CR, Dellinger B, Anal. Cahem., 53, 1302 (1981)
  21. Jeong SK, Park YO, J. Korean Ind. Eng. Chem., 19(1), 80 (2008)
  22. Hayashi T, Kumita M, Otani Y, J. of the Society of Chemical Engineers, Japan, 32, 72 (2006)
  23. Sugiura M, Fukumoto K, J. Mater. Sci., 29(3), 682 (1994)