Macromolecular Research, Vol.17, No.10, 776-784, October, 2009
SBR/Organoclay Nanocomposites for the Application on Tire Tread Compounds
E-mail:
N,N-dimethyldodecylamine (tertiary amine)-modified MMT (DDA-MMT) was prepared as an organically modified layered silicate (OLS), after which styrene-butadiene rubber (SBR) nanocomposites reinforced with the OLS were manufactured via the latex method. The layer distance of the OLS and the morphology of the nanocomposites were characterized by X-ray diffraction (XRD) and transmission electron microscopy (TEM). By increasing the amount of N,N-dimethyldodecylamine (DDA) up to 2.5 g, the maximum values of torque, tensile strength and wear resistance of the SBR nanocomposites were increased due to the increased dispersion of the silicate layers in the rubber matrix and the increased crosslinking of the SBR nanocomposites by DDA itself. When SBR nanocomposites were manufactured by using the ternary filler system (carbon black/silica/OLS) to improve their dynamic properties as a tire tread compound, the tan δ (at 0 ℃ and 60 ℃) property of the compounds was improved by using metal stearates instead of stearic acid. The mechanical properties and wear resistance were increased by direct substitution of calcium stearate for stearic acid because the filler-rubber interaction was increased by the strong ionic effect between the calcium cation and silicates with anionic surface. However, as the amount of calcium stearate was further increased above 0.5 phr, the mechanical properties and wear resistance were degraded due to the lubrication effect of the excessive amount of calcium stearate. Consequently, the SBR/organoclay nanocomposites that used carbon black, silica, and organoclay as their ternary filler system showed excellent dynamic properties, mechanical properties and wear resistance as a tire tread compound for passenger cars when 0.5 phr of calcium stearate was substituted for the conventionally used stearic acid.
Keywords:styrene butadiene rubber;organically modified layered silicates;latex method;morphology;cure characteristics;tan δ;wear resistance;calcium stearate
- Usuki A, Kawasumi M, Kojima Y, Okada A, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1174 (1993)
- Okada A, Kojima Y, Kawasumi M, Fukushima Y, Kurauchi T, Kamigaito O, J. Mater. Res., 8, 1179 (1993)
- Vu YT, Mark JE, Pham LH, Engelhardt M, J. Appl. Polym. Sci., 82(6), 1391 (2001)
- Ray SS, Bhowmick AK, Rubber Chem. Technol., 74, 835 (2001)
- Joly S, Garnaud G, Ollitrault R, Bokobza L, Mark JE, Chem. Mater., 14, 4202 (2002)
- Sadhu S, Bhowmick AK, J. Appl. Polym. Sci., 92(2), 698 (2004)
- Sadhu S, Bhowmick AK, J. Polym. Sci. B: Polym. Phys., 42(9), 1573 (2004)
- Arroyo M, Lopez-Manchado MA, Herrero B, Polymer, 44(8), 2447 (2003)
- Varghese S, Karger-Kocsis J, J. Appl. Polym. Sci., 91(2), 813 (2004)
- Teh PL, Ishak ZAM, Hashim AS, Karger-Kocsis J, Ishiaku US, J. Appl. Polym. Sci., 94(6), 2438 (2004)
- Ganter M, Gronski W, Reichert P, Mulhaupt R, Rubber Chem. Technol., 74, 221 (2002)
- Wang SH, Peng ZL, Zhang Y, Zhang YX, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, p 257
- Nah C, Ryu HJ, Kim WD, Chang YW, Polym. Int’l., 52, 1359 (2003)
- Kim WH, Kim SK, Kang JH, Choe YS, Chang YW, Macromol. Res., 14(2), 187 (2006)
- Hasegawa N, Okamoto H, Usuki A, J. Appl. Polym. Sci., 93(2), 758 (2004)
- Zheng H, Zhang Y, Peng ZL, Zhang YX, J. Appl. Polym. Sci., 92(1), 638 (2004)
- Ma J, Xiang P, Mai YW, Zhang LQ, Macromol. Rapid Commun., 25(19), 1692 (2004)
- Wang YQ, Zhang HF, Wu YP, Wang J, Zhang LQ, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, p 420
- Zhang HF, Wang YQ, Wu YP, Zhang LQ, Yang J, Wang XF, Symposium of International Rubber Conference 2004, Beijing, China, Sep. 21-25, Volume B, p 240
- Wu YP, Jia QX, Yu DS, Zhang LQ, J. Appl. Polym. Sci., 89(14), 3855 (2003)
- Zhang LQ, Wang YZ, Wang YQ, Sui Y, Yu DS, J. Appl. Polym. Sci., 78(11), 1873 (2000)
- Wang YZ, Zhang LQ, Tang CH, Yu DS, J. Appl. Polym. Sci., 78(11), 1879 (2000)
- Wang Y, Zhang H, Wu Y, Yang J, Zhang L, Eur. Polym. J., 41, 2776 (2005)
- Wang MJ, Patterson WL, Paper presented at ACS Meeting, Anaheim, California, May 6 (1997)
- Kim W, Kang BS, Cho SG, Ha CS, Bae JW, Compos. Interfaces, 14(5-6), 409 (2007)
- Wu YP, Wang YQ, Zhang HF, Wang YZ, Yu DS, Zhang LQ, Yang J, Compos. Sci. Technol., 65, 1195 (2005)
- Kobayashi N, Furuta I, Akrema H, Isono Y, Papers American Chemical Society, Division of Rubber Chemistry, 154, 697 (1999)
- Martini ME, ACS 122nd, paper No. 45 (1982)
- Wolff S, Rubber Chem. Technol., 55, 967 (1982)
- Son WJ, Kim W, Cho UR, Elastomer, 37, 86 (2002)
- Nah C, Ph.D. Dissertation, The University of Akron (1995)
- Pulford CTR, Ph.D. Dissertation, The University of Akron (1979)
- Theng, BKG, The Chemistry of Clays Organic Interactions, Wiley, New York (1974)
- Wang MJ, Tan EH, Wolff S, Rubber Chem. Technol., 66, 178 (1993)
- Bandyopadhyay S, De PP, Tripathy DK, De SK, J. Appl. Polym. Sci., 63(13), 1833 (1997)
- Lan T, Kaviratna PD, Pinnavaia TJ, Chem. Mater., 6, 573 (1994)
- Mousa A, Karger-Kenny J, J. Macromol. Mater. Eng., 286, 260 (2001)
- Lopez-Manchado MA, Arroyo M, Herrero B, Biagiotti J, J. Polym. Sci., 89, 6 (2003)
- Payne AR, Whitaker RE, J. Appl. Polym. Sci., 16, 1191 (1972)
- Gent AN, Pulford CTR, J. Appl. Polym. Sci., 28, 943 (1983)
- Hallamach, Proc. Phys. Soc., B67, 883 (1954)
- Garten VA, Eppinger K, Weiss DE, Rubber Chem. Technol., 29, 1434 (1956)
- Wang MJ, Rubber Chem. Technol., 72, 470 (1999)
- Donnet JB, Rubber Chem. Technol., 71, 323 (1998)
- Wang MJ, Rubber Chem. Technol., 71, 520 (1998)
- Son MJ, Master’s Thesis, Pusan National University (2007)
- Park SS, Park BH, Song KC, Kim SK, Polym.(Korea), 24(2), 220 (2000)
- Barron H, Reprinted from the India-Rubber Journal, 90, 638 (1935)