Korea-Australia Rheology Journal, Vol.21, No.3, 175-183, September, 2009
Numerical study of the effects of periodic body acceleration (PGZ) and bifurcation angle in the stenosed artery bifurcation
E-mail:
This article describes the numerical investigation of blood flow in the stenosed artery bifurcation with acceleration of the human body. Using the commercial software FLUENT, three-dimensional analyses were performed for six simulation cases with different body accelerations and bifurcation angles. The blood flow was considered to be pulsation flow, and the blood was considered to be a non-Newtonian fluid based on the Carreau viscosity model. In order to consider periodic body acceleration, a modified, time-dependent, gravitational-force term was used in the momentum equation. As a result, flow variables, such as flow rate and wall shear stress, increase with body acceleration and decrease with bifurcation angle. High values of
body acceleration generate back flow during the diastolic period, which increases flow fluctuation and the oscillatory shear index at the stenosis.
Keywords:periodic body acceleration;Computational Fluid Dynamics;stenosis;artery bifurcation;wall shear stress
- Adams JA, Bassuk JA, Aris J, Wu H, Jorapur V, Lamas GA, Kurlansky P, Pediatr. Res., 64, 533 (2008)
- Adams JA, Mangino MJ, Bassuk J, Kurlansky P, Sackner MA, Crit. Care Med., 29, 1983 (2001)
- Arntzenius AC, Koops J, Rodrigo FA, Elsbach H, Brurnmelen AG, Bibl Cardiol., 26, 180 (1969)
- Berger SA, Jou LD, Annu Rev Fluid Mech., 32, 347 (2000)
- Bradley JG, Davis KA, Am Fam Physician., 68, 2393 (2003)
- Burton RR, Leverett SD, Michaelson SD, Aerosp Med., 45, 1115 (1974)
- Caro CG, Fitz-Gerald JM, Schroter RC, Proc. R. Soc. Lond., B, Biol. Sci., 177, 109 (1971)
- CEN Report 12349, 2006, Guide to good practice on Whole-Body Vibration. WBV Good practice Guide v6.7g, EUROPEAN COMMITTEE FOR STANDARDIZATION.
- Chakravarty S, Mandal PK, Math Comput Model., 24, 43 (1996)
- Chaturani P, Palanisamy V, Biorheology., 27, 619 (1990)
- Chaturani P, Palanisamy V, Int. J. Eng. Sci., 29, 113 (1991)
- Chaturani P, Isaac ASA, Wassf, Int. J. Eng. Sci., 33, 1807 (1995)
- Cho YI, Back LH, Crawford DW, J Biomech Eng., 107, 257 (1985)
- El-Shahed M, Appl Math Comput., 138, 479 (2003)
- Fry DL, Circ. Res., 22, 165 (1968)
- Fry DL, Circ. Res., 24, 93 (1969)
- He X, Ku DN, J Biomech Eng., 118, 74 (1996)
- Hiatt EP, Mecchan JP, Galambos, Reports on human acceleration, nasnrc washington dc, publication 901. (1961)
- Hooks LE, Nerem RM, Benson TJ, Int J Eng Sci., 10, 989 (1972)
- ISO, 1997, Mechanical vibration and shock - Evaluation of human exposure to whole-body vibration - Part 1: General requirements, International Organization for Standardization, 2631-1.
- Ku DN, Giddens DP, Zarins CK, Glagov S, Arteriosclerosis., 5, 293 (1985)
- Mandal PK, Chakravarthy S, Mandal A, Amin N, Appl Math Comput., 189, 766 (2007)
- Mirsa JC, Sahu BK, Comput Math Appl., 16, 993 (1988)
- Nagarani P, Sarojamma G, Korea-Aust. Rheol. J., 20(4), 189 (2008)
- Smedby O, Arterioscler Thromb Vasc Biol., 17, 912 (1997)
- Sud VK, Sekhon GS, Bull. Math. Biol., 47, 35 (1985)
- Sud VK, Sekhon GS, J Biomech., 19, 929 (1986)
- Tang D, Yang C, Zheng J, Woodard PK, Sicard GA, Saffitz JE, Yuan C, Ann Biomed Eng., 32, 947 (2004)
- Tang D, Yang C, Kobayashi S, Ku DN, J Biomech Eng., 126, 363 (2004)
- Young DF, J Eng Ind Trans ASME., 90, 148 (1968)
- Zerwic JJ, Heart Lung., 27, 75 (1988)