Korean Chemical Engineering Research, Vol.47, No.5, 608-614, October, 2009
루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동
Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15)
E-mail:
초록
본 연구에서는, 비이온성 삼원공중합체 계면활성제인 EO20PO70EO20를 주형으로 사용해, 다양한 Si/Ru 몰 비의 루테늄이 치환된 SBA-15들(Ru-SBA-15)을 합성하였다. 촉매 또는 선택적 흡착제 등으로써의 응용가능성을 검토하기 위해 Ru-SBA-15의 질소 또는 산소 흡착/탈착 거동을 조사하였다. Ru-SBA-15의 기공 크기는 Barrett-Joyner-Halenda(BJH) 및 Broekhoff-de Boer/Frenkel-Halsey-Hill isotherm(BdB-FHH) 방법(D(BdB-FHH))을 이용하여 결정하였다. Si/Ru 비율이 50/1인 Ru-SBA 15의 D(BJH)와 D(Bdb-FHH)는 각각 3.9, 4.7 nm였다. 투과전자현미경(TEM) 관찰에 의해 Si/Ru의 몰비율이
50인 Ru-SBA 15의 기공 크기는 4.7 nm로 나타났고, 이것은 BdB-FHH 방법을 사용한 N2 흡착 결과와 일치하였다. 산소 흡착/탈착 등온선으로부터 얻은 Brunauer-Emmett-Teller(BET) 기공 표면적은 질소의 흡착/탈착 등온선으로부터의 기공 표면적보다 높았는데, 각각 612.7 m2/g, 그리고 573.3 m2/g이었다. X선 회절(XRD) 패턴과 TEM 분석에 의해 본 연구에서 합성한 Ru-SBA-15는 잘 정렬된 육방정계 정렬을 가지는 것을 알 수 있었다.
In this work, ruthenium substituted SBA-15’s(Ru-SBA15’s) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, EO20PO70EO20, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15’s for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15’s was determined by both the Barrett-Joyner-Halenda(BJH)(D(BJH)) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method(D(BdB-FHH)). The D(BJH) and D(BdB-FHH) of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the N2 adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively 612.7 m2/g, and 573.3 m2/g. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.
- Liu AM, Hidajat K, Kawi S, Zhao DY, Chem. Commun, 1145 (2000)
- Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM, Science, 276(5314), 923 (1997)
- Luan Z, Bae JY, Kevan L, Chem.Mater., 12, 3202 (2000)
- Mercier L, Pinnavaia TJ, Adv. Mater., 9(6), 500 (1997)
- Moller K, Bein T, Chem. Mater., 10, 2950 (1998)
- Fowler CE, Lebeau B, Mann S, Chem. Commun., 1825 (1998)
- Lim MH, Blanford CF, Stein A, J. Am. Chem. Soc., 119(17), 4090 (1997)
- Oh J, Imail H, Hirashima H, Chem. Mater., 10, 1582 (1998)
- Wu CG, Bein T, Science, 264(5166), 1757 (1994)
- Wu CG, Bein T, Science, 266(5187), 1013 (1994)
- Honma I, Zhou HS, Adv. Mater., 10(18), 1532 (1998)
- Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548 (1998)
- Balogh M, Laszlo P, Springer-Verlag, Berlin, pp. 77 (1993)
- Shelef M, Gandhi HS, Ind. Eng. Chem., Pro. Res. Dev., 11, 393 (1972)
- Nijs H, Jacobs PA, Uytterhoeven JB, J. Chem. Soc. Chem. Commun., 180 (1979)
- Pecoraro TA, Chianelli RR, J. Catal., 67, 430 (1981)
- Mitchell PCH, Scott CE, Bonnelle JP, Grimblot JG, J. Catal., 107, 482 (1987)
- Kuo YJ, Cocco RA, Tatarchuk BJ, J. Catal., 112, 250 (1988)
- Kuo YJ, Tatarchuk BJ, J. Catal., 112, 229 (1988)
- Vannice MA, Catal, Rev-Sci. Eng., 14, 153 (1976)
- Vannice MA, J. Catal., 44, 152 (1976)
- Lam YL, Sinfelt JH, J. Catal., 42, 319 (1976)
- Dalla Betta RA, J. Phys. Chem., 79, 2519 (1975)
- Yang CH, Goodwin JG, React. Kinet. Catal. Lett., 20, 13 (1982)
- Sayari A, Wang HT, Goodwin JG, J. Catal., 93, 368 (1985)
- Cui X, Zin WC, Cho WJ, Ha CS, Mater. Lett., 59, 2257 (2005)
- Newalkar BL, Olanrewaju J, Komarneni S, Chem. Mater., 13, 552 (2001)
- Kim MY, Jung SB, Kim MG, Yuo JS, Park JH, Shin CH, Seo G, Cat. Lett., 129, 194 (2009)
- Kim MY, You YS, Han HS, Seo G, Catal. Lett., 120(1-2), 40 (2008)
- Barrett EP, Joyner LG, Halenda PP, J. Am.Chem. Soc., 73, 373 (1951)
- Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
- Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, London, pp. 2-120 (1982)
- Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
- Langmuir I, J. Am. Chem.Soc., 38, 2221 (1916)
- Defay R, Prigogine I, Bellemans A, Everett DH, Longmans, London, pp. 218 (1970)
- Luan Z, Maes EM, Van der Heide PAW, Zhao D, Zernuszewicz RS, Keven L, Chem. Mater., 11, 3680 (1999)
- Broekhoff JCP, de Boer JH, J. Catal., 9, 8 (1967)
- Broekhoff JCP, de Boer JH, J. Catal., 9, 15 (1967)
- Ravikovitch PI, Wei D, Chueh WT, Haller GL, Neimark AV, J. Phys. Chem. B, 101(19), 3671 (1997)
- Kruk M, Jaroniec M, Sayari A, In Proceedings of the 12th International Zeolite Conference; edited by Treacy MJ, Marcus BK, Bisher ME, Higgins JE, Materials Research Society, Warrendale, PA, pp. 761-766 (1999)
- Lukens WW, Schmidt-Winkel P, Zhao DY, Feng JL, Stucky GD, Langmuir, 15(16), 5403 (1999)
- Kruk M, Jaroniec M, Kim JH, Ryoo R, Langmuir, 15(16), 5279 (1999)
- Aronson BJ, Blanford CF, Stein A, J. Phys. Chem. B, 104(3), 449 (2000)
- Gomez S, Giraldo O, Garces LJ, Villegas J, Suib SL, Chem. Mater., 16, 2411 (2007)
- Wahab MA, Ha CS, J. Mater. Chem., 15, 508 (2005)
- Shen SC, Kawi S, Langmuir, 18(12), 4720 (2002)
- Park JW, Seo G, Appl. Catal. A-Gen., 356, 180 (2009)
- Hong SB, Seo G, Uh YS, Korean J. Chem. Eng., 15(5), 566 (1998)