화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.5, 608-614, October, 2009
루테늄이 치환된 SBA-15(Ru-SBA-15)의 질소 및 산소 흡착 거동
Nitrogen and Oxygen Sorption Behaviors of Ruthenium-Substituted SBA 15(Ru-SBA-15)
E-mail:
초록
본 연구에서는, 비이온성 삼원공중합체 계면활성제인 EO20PO70EO20를 주형으로 사용해, 다양한 Si/Ru 몰 비의 루테늄이 치환된 SBA-15들(Ru-SBA-15)을 합성하였다. 촉매 또는 선택적 흡착제 등으로써의 응용가능성을 검토하기 위해 Ru-SBA-15의 질소 또는 산소 흡착/탈착 거동을 조사하였다. Ru-SBA-15의 기공 크기는 Barrett-Joyner-Halenda(BJH) 및 Broekhoff-de Boer/Frenkel-Halsey-Hill isotherm(BdB-FHH) 방법(D(BdB-FHH))을 이용하여 결정하였다. Si/Ru 비율이 50/1인 Ru-SBA 15의 D(BJH)와 D(Bdb-FHH)는 각각 3.9, 4.7 nm였다. 투과전자현미경(TEM) 관찰에 의해 Si/Ru의 몰비율이 50인 Ru-SBA 15의 기공 크기는 4.7 nm로 나타났고, 이것은 BdB-FHH 방법을 사용한 N2 흡착 결과와 일치하였다. 산소 흡착/탈착 등온선으로부터 얻은 Brunauer-Emmett-Teller(BET) 기공 표면적은 질소의 흡착/탈착 등온선으로부터의 기공 표면적보다 높았는데, 각각 612.7 m2/g, 그리고 573.3 m2/g이었다. X선 회절(XRD) 패턴과 TEM 분석에 의해 본 연구에서 합성한 Ru-SBA-15는 잘 정렬된 육방정계 정렬을 가지는 것을 알 수 있었다.
In this work, ruthenium substituted SBA-15’s(Ru-SBA15’s) of various Si/Ru ratios were prepared using a non-ionic triblock copolymer surfactant, EO20PO70EO20, as template. We investigated the nitrogen or oxygen adsorption/desorption behaviors of the Ru-SBA-15’s for their future applications as catalysts or selective adsorbents, etc. The pore size of the Ru-SBA-15’s was determined by both the Barrett-Joyner-Halenda(BJH)(D(BJH)) and the Broekhoff-de Boer analysis with a Frenkel-Halsey-Hill isotherm(BdB-FFF) method(D(BdB-FHH)). The D(BJH) and D(BdB-FHH) of the Ru-SBA-15 having 50/1 ratio of Si/Ru were 3.9 nm and 4.7 nm, respectively. The transmission electron microscope(TEM) image of the Ru-SBA 15 of the Si/Ru mole ratio of 50 showed that the pore size is 4.7 nm, which is consistent with the N2 adsorption results with the BdB-FHH method. The surface area of pores form oxygen adsorption/desorption isotherm was higher than that from the nitrogen adsorption/desorption isotherm by the Brunauer-Emmett-Teller(BET) method, which were respectively 612.7 m2/g, and 573.3 m2/g. X-ray diffraction(XRD) patterns and TEM analyses showed that the mesoporous materials possess well-ordered hexagonal arrays.
  1. Liu AM, Hidajat K, Kawi S, Zhao DY, Chem. Commun, 1145 (2000)
  2. Feng X, Fryxell GE, Wang LQ, Kim AY, Liu J, Kemner KM, Science, 276(5314), 923 (1997)
  3. Luan Z, Bae JY, Kevan L, Chem.Mater., 12, 3202 (2000)
  4. Mercier L, Pinnavaia TJ, Adv. Mater., 9(6), 500 (1997)
  5. Moller K, Bein T, Chem. Mater., 10, 2950 (1998)
  6. Fowler CE, Lebeau B, Mann S, Chem. Commun., 1825 (1998)
  7. Lim MH, Blanford CF, Stein A, J. Am. Chem. Soc., 119(17), 4090 (1997)
  8. Oh J, Imail H, Hirashima H, Chem. Mater., 10, 1582 (1998)
  9. Wu CG, Bein T, Science, 264(5166), 1757 (1994)
  10. Wu CG, Bein T, Science, 266(5187), 1013 (1994)
  11. Honma I, Zhou HS, Adv. Mater., 10(18), 1532 (1998)
  12. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD, Science, 279(5350), 548 (1998)
  13. Balogh M, Laszlo P, Springer-Verlag, Berlin, pp. 77 (1993)
  14. Shelef M, Gandhi HS, Ind. Eng. Chem., Pro. Res. Dev., 11, 393 (1972)
  15. Nijs H, Jacobs PA, Uytterhoeven JB, J. Chem. Soc. Chem. Commun., 180 (1979)
  16. Pecoraro TA, Chianelli RR, J. Catal., 67, 430 (1981)
  17. Mitchell PCH, Scott CE, Bonnelle JP, Grimblot JG, J. Catal., 107, 482 (1987)
  18. Kuo YJ, Cocco RA, Tatarchuk BJ, J. Catal., 112, 250 (1988)
  19. Kuo YJ, Tatarchuk BJ, J. Catal., 112, 229 (1988)
  20. Vannice MA, Catal, Rev-Sci. Eng., 14, 153 (1976)
  21. Vannice MA, J. Catal., 44, 152 (1976)
  22. Lam YL, Sinfelt JH, J. Catal., 42, 319 (1976)
  23. Dalla Betta RA, J. Phys. Chem., 79, 2519 (1975)
  24. Yang CH, Goodwin JG, React. Kinet. Catal. Lett., 20, 13 (1982)
  25. Sayari A, Wang HT, Goodwin JG, J. Catal., 93, 368 (1985)
  26. Cui X, Zin WC, Cho WJ, Ha CS, Mater. Lett., 59, 2257 (2005)
  27. Newalkar BL, Olanrewaju J, Komarneni S, Chem. Mater., 13, 552 (2001)
  28. Kim MY, Jung SB, Kim MG, Yuo JS, Park JH, Shin CH, Seo G, Cat. Lett., 129, 194 (2009)
  29. Kim MY, You YS, Han HS, Seo G, Catal. Lett., 120(1-2), 40 (2008)
  30. Barrett EP, Joyner LG, Halenda PP, J. Am.Chem. Soc., 73, 373 (1951)
  31. Sing KSW, Everett DH, Haul RAW, Moscow L, Pierotti RA, Rouquerol J, Siemieniewska T, Pure Appl. Chem., 57, 603 (1985)
  32. Gregg SJ, Sing KSW, Adsorption, Surface Area and Porosity, Academic Press, London, pp. 2-120 (1982)
  33. Brunauer S, Emmett PH, Teller E, J. Am. Chem. Soc., 60, 309 (1938)
  34. Langmuir I, J. Am. Chem.Soc., 38, 2221 (1916)
  35. Defay R, Prigogine I, Bellemans A, Everett DH, Longmans, London, pp. 218 (1970)
  36. Luan Z, Maes EM, Van der Heide PAW, Zhao D, Zernuszewicz RS, Keven L, Chem. Mater., 11, 3680 (1999)
  37. Broekhoff JCP, de Boer JH, J. Catal., 9, 8 (1967)
  38. Broekhoff JCP, de Boer JH, J. Catal., 9, 15 (1967)
  39. Ravikovitch PI, Wei D, Chueh WT, Haller GL, Neimark AV, J. Phys. Chem. B, 101(19), 3671 (1997)
  40. Kruk M, Jaroniec M, Sayari A, In Proceedings of the 12th International Zeolite Conference; edited by Treacy MJ, Marcus BK, Bisher ME, Higgins JE, Materials Research Society, Warrendale, PA, pp. 761-766 (1999)
  41. Lukens WW, Schmidt-Winkel P, Zhao DY, Feng JL, Stucky GD, Langmuir, 15(16), 5403 (1999)
  42. Kruk M, Jaroniec M, Kim JH, Ryoo R, Langmuir, 15(16), 5279 (1999)
  43. Aronson BJ, Blanford CF, Stein A, J. Phys. Chem. B, 104(3), 449 (2000)
  44. Gomez S, Giraldo O, Garces LJ, Villegas J, Suib SL, Chem. Mater., 16, 2411 (2007)
  45. Wahab MA, Ha CS, J. Mater. Chem., 15, 508 (2005)
  46. Shen SC, Kawi S, Langmuir, 18(12), 4720 (2002)
  47. Park JW, Seo G, Appl. Catal. A-Gen., 356, 180 (2009)
  48. Hong SB, Seo G, Uh YS, Korean J. Chem. Eng., 15(5), 566 (1998)