화학공학소재연구정보센터
Korean Chemical Engineering Research, Vol.47, No.5, 646-650, October, 2009
나노기공성 Na2CO3/Al2O3 흡착제를 이용한 합성가스(CO2, H2) 내 CO2 제거
Removal of CO2 from Syngas(CO2 and H2) Using Nanoporous Na2CO3/Al2O3 Adsorbents
E-mail:
초록
폐기물가스화시 발생하는 탄화수소계 가스를 촉매개질하면 CO2 및 H2로 전환되는데, 이때 잔류 CO2를 선택적으로 흡착/제거하여 순수한 H2를 생산하고자 하였다. CO2 제거를 위한 흡착제의 성능을 최적화하기 위해 Na2CO3를 나노기공성 알루미나에 담지시켰으며, 상용 알루미나(데구사)와의 성능을 비교하였다. 나노기공성 흡착제의 경우 상용화알루미나로 제조한 흡착제보다 균일한 기공 및 넓은 표면적을 가짐을 확인하였다. Na2CO3 함량증가에 따라 CO2 흡착량은 증가하여, Na2CO3 단위질량당 최대흡착량은 20 oC에서 20 wt%일 때 얻을 수 있었다. 담지량이 20 wt% 이상일 때는 잔류 Na2CO3가 알루미나 표면에 도포됨에 따라 기공부피가 감소하였다. 또한 흡착이 완료된 흡착제는 열처리를 통한 재생이 가능하였다.
Hydrocarbon gases generated from the gasification of waste could be converted into CO2 and H2 using reforming catalysts and then CO2 was selectively adsorbed and removed to obtain pure hydrogen. To optimize adsorption efficiency for CO2 removal, Na2CO3 was supported on nanoporous alumina and the efficiency was compared with commercial alumina(Degussa). Nanoporous adsorbents formed more uniform pores and larger surface area compared to adsorbents using commercial alumina. The increase of Na2CO3 loading improved adsorption of CO2. Finally, the highest adsorption capacity per unit mass of Na2CO3 could be achieved when the loading of Na2CO3 reached up to 20wt%. When the content of Na2CO3 increased above 20 wt%, it aggregated on the surface, and the pore volume was decreased. Used adsorbents could be recycled by the thermal treatment.
  1. Hassmann K, Kuhne HM, Int. J. Hydrogen Energy, 18, 635 (1993)
  2. Richterova V, Energy Convers. Manage., 24, 27 (1984)
  3. Abe I, Fujimaki T, Matsubara M, Int. J. Hydrogen Energy, 9, 753 (1984)
  4. Choudhary TV, Sivadinarayana C, Klinghoffer A, Goodman DW, Stud. Surf. Sci. Catal., 136, 197 (2001)
  5. Sekine Y, Asai S, Kikuchi E, Matsukata M, Haga F, Stud. Surf. Sci. Catal., 159, 813 (2006)
  6. Kim JK, Kim YH, Park JW, Bae JS, Yoon DY, Lee JG, Kim JH, Han C, Korean J. Chem. Eng., 26(1), 32 (2009)
  7. Tosti S, Basile A, Chiappetta G, Rizzello C, Violante V, Chem. Eng., 93, 23 (2003)
  8. Morioka H, Shimizu Y, Sukenobu M, Ito K, Tanabe E, Shishido T, Takehira K, Appl. Catal. A: Gen., 215(1-2), 11 (2001)
  9. Moon KI, Kim CH, Choi JS, Lee SH, Kim YG, Lee JS, HWAHAK KONGHAK, 35(6), 883 (1997)
  10. Erdohelyi A, Fodor K, Solymosi K, Stud. Surf. Sci. Catal., 107, 525 (1997)
  11. Manuel I, Chaubet K, Thomas C, Colas H, Matthess N, Djega-Mariadassou G, J. Catal., 224(2), 269 (2004)
  12. Grisel RJH, Neiuwenhuys BE, Catal. Today, 64(1-2), 69 (2001)
  13. Martavaltzi CS, Lemonidou AA, Micropor. Mesopor. Mater., 110, 119 (2008)
  14. Ochoa-Fernandez E, Rusten HK, Jakobsen HA, Ronning M, Holmen A, Chen D, Catal. Today, 106(1-4), 41 (2005)
  15. Kim Y, Kim C, Choi I, Rengaraj S, Yi J, Environ. Sci. Technol., 38, 924 (2004)