화학공학소재연구정보센터
Advanced Functional Materials, Vol.19, No.17, 2812-2818, 2009
Printable Ferroelectric PVDF/PMMA Blend Films with Ultralow Roughness for Low Voltage Non-Volatile Polymer Memory
Here, a facile route to fabricate thin ferroelectric poly(vinylidene fluoride) (PVDF)/poly(methylmethacrylate) (PMMA) blend films with very low surface roughness based on spin-coating and subsequent melt-quenching is described. Amorphous PMMA in a blend film effectively retards the rapid crystallization of PVDF upon quenching, giving rise to a thin and flat ferroelectric film with nanometer scale beta-type PVDF crystals. The still, flat interfaces of the blend film with metal electrode and/or an organic semi-conducting channel layer enable fabrication of a highly reliable ferroelectric capacitor and transistor memory unit operating at voltages as low as 15 V. For instance, with a TIPS-pentacene single crystal as an active semi-conducting layer, a flexible ferroelectric field effect transistor shows a clockwise I-V hysteresis with a drain current bistability of 10(3) and data retention time of more than 15 h at +/- 15 V gate voltage. Furthermore, the robust interfacial homogeneity of the ferroelectric film is highly beneficial for transfer printing in which arrays of metal/ferroelectric/metal micro-capacitors are developed over a large area with well defined edge sharpness.