화학공학소재연구정보센터
Chemical Engineering Science, Vol.64, No.16, 3598-3613, 2009
Comparison of fluidized bed flow regimes for steam methane reforming in membrane reactors: A simulation study
An important decision in the design of fluidized bed reactors is which of several flow regimes to choose. Almost all fluidized bed reactor models are restricted to a single flow regime, making comparison difficult, especially near the regime boundaries. This paper examines the performance of fluidized bed methane reformers with three models-a simple equilibrium model and two kinetic distributed models, based on different assumptions of varying sophistication. Membranes are incorporated to improve reactor performance. Eighteen cases are simulated for different flow regimes and membrane configurations. Predictions for the fast fluidization and turbulent flow regimes show that the rate-controlling step is permeation through the membranes. Bubbling regime simulations predict somewhat less hydrogen production than for turbulent and fast fluidization, due to the effects of interphase crossflow and mass transfer. Overall reactor performance is predicted to be best under turbulent fluidization operation. Practical considerations also affect the advantages, shortcomings and ultimate choice of flow regime. (C) 2009 Elsevier Ltd. All rights reserved.