화학공학소재연구정보센터
Inorganic Chemistry, Vol.48, No.11, 4882-4895, 2009
Structural and Photoluminescence Studies of a Europium(III) Tetrakis (beta-diketonate) Complex with Tetrabutylammonium, Imidazolium, Pyridinium and Silica-Supported Imidazolium Counterions
Tetrakis(naphthoyltrifluoroacetonato)lanthanate(III) complexes (Ln = Eu, Gd) containing the cations tetrabutylammonium, [NBu4](+); 1-butyl-3-methylimidazolium, [C(4)mim](+); and 1-butyl-3-methylpyridinium, [C(4)mpyr](+), have been prepared and structurally characterized by single-crystal X-ray diffraction. The {EuO8} coordination sphere in [NBu4][Eu(NTA)(4)] is best described as a distorted dodecahedron, where the metal ion is located at the 4-fold inversion axis with only one crystallographically independent NTA residue. In [C(4)mim][Eu(NTA)(4)] and [C(4)mpyr][Gd (NTA)(4)], the central Ln(3+) ions are coordinated by eight oxygen atoms from four distinct beta-diketonate ligands, in an overall distorted square-antiprismatic geometry. Besides electrostatic interactions, the crystal packing in all three structures is stabilized by offset pi-pi interactions involving the naphthyl rings of neighboring complexes (and, for [C(4)mim][Eu(NTA)(4)] and [C(4)mpyr][Gd(NTA)(4)], neighboring naphthyl/imidazolium and naphthyl/pyridinium rings) and C-H center dot center dot center dot pi contacts. The photoluminescence properties of the three Eu-III complexes were studied at room temperature and -259 degrees C by measuring emission and excitation spectra, D-5(0) emission decay curves, and absolute emission quantum yields. Under ligand excitation (lambda(eX)=290-395 nm), the quantum yields (room temperature) were in the range 0.72-0.77 for the 1-butyl-3-methylimidazolium salt. An immobilized analogue of this complex was prepared by supporting [Eu(NTA)(4)](-) on an ordered mesoporous silica derivatized with 1-propyl-3-methylimidazolium groups. The disappearance of the intra-4f(6) lines in the excitation spectrum of the supported material indicated an increase in the ligand's sensitization process of the Eu3+ ions, relative to direct intra-4f(6) excitation. The emission quantum yield measured for the supported material (0.32-0.40, for excitations between 265 and 360 nm) is the highest so far reported for lanthanide-containing ordered mesoporous silicas.