Applied Biochemistry and Biotechnology, Vol.150, No.2, 205-219, 2008
Biophysical and biochemical characterization of a hyperthermostable and Ca2+-independent alpha-amylase of an extreme thermophile Geobacillus thermoleovorans
alpha-Amylases reported from various microbial sources have been shown to be moderately thermostable and Ca2+ dependent. The bacterial strain used in this investigation is an extremely thermophilic bacterium Geobacillus thermoleovorans that produces a novel alpha-amylase (26 kDa; alpha-amylase gt), which is hyperthermostable (T-opt 100 C) and does not require Ca2+ for its activity/stability. These special features of alpha-amylase gt make it applicable in starch saccharification process. The structural aspects of alpha-amylase gt are, therefore, of significant interest to understand its structure-function relationship. The circular dichroism spectroscopic data revealed the native alpha-amylase gt to contain 25% alpha-helix, 21% beta- sheet, and 54% random coils. The addition of urea, at high concentration ( 8 M), appeared to expose the buried Trp residues of the native alpha-amylase gt to the aqueous environment and thus showed low fluorophore. Fluorescence-quenching experiments using KI, CsCl, N-bromosuccinimide, and acrylamide revealed interesting features of the tryptophan microenvironment. Analysis of K-SV and f(a) values of KI, CsCl, and acrylamide suggested the overall Trp microenvironment in alpha-amylase to be slightly electropositive. Fluorescence-quenching studies with acrylamide revealed the occurrence of both collisional as well as static quenching processes. There was no change in the alpha-helix content or the enzyme activity with an increase in temperature (60-100 degrees C) that suggested a critical role of the alpha-helix content in maintaining the catalytic activity.