화학공학소재연구정보센터
Applied Microbiology and Biotechnology, Vol.79, No.4, 679-685, 2008
Organics and nitrogen removal and sludge stability in aerobic granular sludge membrane bioreactor
Novel aerobic granular sludge membrane bioreactor (GMBR) was established by combining aerobic granular sludge technology with membrane bioreactor (MBR). GMBR showed good organics removal and simultaneous nitrification and denitrification (SND) performances for synthesized wastewater. When influent total organic carbon (TOC) was 56.8-132.6 mg/L, the TOC removal of GMBR was 84.7-91.9%. When influent ammonia nitrogen was 28.1-38.4 mg/L, the ammonia nitrogen removal was 85.4-99.7%, and the total nitrogen removal was 41.7-78.4%. Moreover, batch experiments of sludge with different particle size demonstrated that: (1) flocculent sludge under aerobic condition almost have no denitrification capacity, (2) SND capacity was caused by the granular sludge, and (3) the denitrification rate and total nitrogen removal efficiency were enhanced with the increased particle size. In addition, study on the sludge morphology stability in GMBR showed that, although some granular sludge larger than 0.9 mm disaggregated at the beginning of operation, the granular sludge was able to maintain the stability of its granular morphology, and at the end of operation, the amount of granular sludge (larger than 0.18 mm) stabilized in GMBR was more than 56-62% of the total sludge concentration. The partial disaggregation of large granules is closely associated with the change of operating mode from sequencing batch reactor (SBR) system to MBR system.