- Previous Article
- Next Article
- Table of Contents
Applied Microbiology and Biotechnology, Vol.84, No.3, 397-405, 2009
Biocatalytic production of (S)-4-bromo-3-hydroxybutyrate and structurally related chemicals and their applications
The enzymatic production of (S)-4-bromo-3-hydroxybutyrate has been poorly studied compared with (S)-4-chloro-3-hydroxybutyrate. This can be attributed to the toxicity of bromide for biocatalysis. Recently, we isolated cDNA that encodes Penicillium citrinum beta-keto ester reductase (KER) and the gene that encodes Leifsonia sp. alcohol dehydrogenase, which catalyzes the reduction of methyl 4-bromo-3-oxobutyrate to methyl (S)-4-bromo-3-hydroxybutyrate with high optical purity and productivity and expressed them in Escherichia coli. Moreover, protein engineering was performed using error-prone PCR-based random mutagenesis to improve the thermostability and enantioselectivity of KER. This review focuses on the establishment of a novel biotechnological process for the production of (S)-4-bromo-3-hydroxybutyrate using E. coli transformants. This process is suitable for industrial production of (S)-4-bromo-3-hydroxybutyrate, an intermediate for statin compounds.
Keywords:(S)-4-Bromo-3-hydroxybutyrate;Intermediate for statin compounds;Enzymatic production;Aldo-keto reductase;Penicillium citrinum;Alcohol dehydrogenase;Leifsonia sp.