Fuel, Vol.77, No.15, 1861-1864, 1998
Determination of oxygenates in gasoline by FTIR
Oxygenates of the type C-1 to C-4 alcohols and MTBE have been used for improving the octane number of gasoline and helping in reduction of emissions. These oxygenates are used as substitutes for the poisonous tetraethyl lead. The ASTM D-4815 method utilizes a GC method for determining methanol, ethanol, l-propanol, 2-propanol, 1-butanol, 2-butanol, isobutanol (2-methyl-1-propanol), tert-butanol (2-methyl-2-propanol) and methyl tert-butyl ether (MTBE) in gasoline. However, since this method requires a variety of column switching and back-flushing systems, the possibility of using a simple and fast mid-IR transmission method for accomplishing the same task was pursued. For this, an instrument manufacturer's software that utilizes a partial least square (PLS) regression analysis in the region of importance for alcohols and ethers (1300 to 810 cm(-1)) was chosen and successfully developed. A set of fuel blend samples (32) that contained concentrations in the range of 0.7 to 4.0 (wt/vol) of the components were used for calibration purposes. Results indicated that the correlation (R-2) between the actual and predicted values of 70 laboratory prepared samples of concentrations in the range 0.7 to 8.1% (wt/vol) were 0.995, 0.995, 0.991, 0.992, 0.983, 0.995, 0.989, 0.984 and 0.996 for methanol, ethanol, l-propanol, 2-propanol, l-butanol, 2-butanol, isobutanol, tert-butanol and MTBE respectively.
Keywords:TERT-BUTYL ETHER;GAS-CHROMATOGRAPHIC METHOD;INFRARED-SPECTROSCOPY;METHANOL;SPECTROMETRY;RAMAN;MTBE;TAME;IR