화학공학소재연구정보센터
Applied Surface Science, Vol.256, No.3, 862-869, 2009
Evaluation for the configurational and electronic state of SO3 adsorbed on Pt surface
We evaluate the adsorption of SO3 molecule on the Pt (1 1 1) surface using the first-principles calculations by a slab model with a periodic boundary condition. We find that there are four stable adsorption configurations on the Pt surface, where SO3 molecules are adsorbed above the three-fold fcc and hcp sites. In two of these configurations, S and two O atoms are bound to the Pt atoms, and in two other of them, all the three O atoms are bound to Pt surface atoms. Besides, it is found that molecular orbitals of SO3 and those of Pt surface are hybridized in the active metal d-bands region, that the localized molecular orbitals in SO3 are stabilized, and that the charge is transferred from Pt to S 3p by SO3 adsorption on Pt surface though the other interaction of S and O (bound to Pt) component with Pt is little. In addition, the bond between S and O bound to Pt become weak by SO3 adsorption on Pt surface because the charge polarization to O-Pt bond weakens the bond between S and O bound to Pt. This interaction is assumed to encourage the breakage of S-O bond. (C) 2009 Elsevier B. V. All rights reserved.