화학공학소재연구정보센터
Korean Journal of Chemical Engineering, Vol.27, No.1, 187-192, January, 2010
Bio-hydrogen production from a marine brown algae and its bacterial diversity
E-mail:
The aim of this study was to determine how bio-hydrogen production was related to the composition of the bacterial community in a dark fermentation fed with marine brown algae (Laminaria japonica). The bacterial diversity was ascertained by 16S rDNA PCR-sequencing. A total of 444 mL of bio-hydrogen was produced from 10 g/L of dry algae in a 100 mL of culture fluid for 62 h. The pH varied from 8.74 to 7.05. Active bio-hydrogen production was observed from 24 to 48 h, and maximum bio-hydrogen production was 106 mL over 1 L gas. The bacterial community of the activated sludge consisted of 6 phyla, where H2 producing and consuming bacteria coexisted. The only detectable bacterial phylum after bio-hydrogen generation with heat-treated (65 ℃, 20 min) seeding was Firmicutes. Clostridium and Bacillus species constituted 54% and 46%, respectively, of the bacterial mixture and the most abundant species was Clostridium beijierinckii (34%). These results may provide a better understanding of how different biohydrogen communities affect hydrogen production and aid in the optimization of bio-hydrogen production.
  1. Veziroglu TN, Barbir F, Int. J. Hydrogen Energy, 17, 391 (1992)
  2. Bicelli PL, Int. J. Hydrogen Energy, 11, 555 (1986)
  3. Dasa D, Veziroglu N, Int. J. Hydrogen Energy, 33, 6046 (2008)
  4. Christensen CH, Jørgensen B, Rass-Hansen J, Egeblad K, Madsen R, Klitgaard SK, Hansen SM, Hansen MR, Andersen HC, Riisager A, Angew. Chem. Int. Ed., 45, 4648 (2006)
  5. Park BG, Korean J. Chem. Eng., 21(4), 782 (2004)
  6. Hansen AC, Zhang Q, Lyne PWL, Bioresour. Technol., 96(3), 277 (2005)
  7. Kalia VC, Purohit HJ, J. Ind. Microbiol. Biotechnol., 35, 403 (2008)
  8. Rocha JS, Barbosa MJ, Wijffels RH, in Biohydrogen II-An approach to environmentally acceptable technology, Miyaki J, Matsunaga T, San Pietro A Eds., Pergamon Press, London (2001)
  9. Benemann R, in Biohydrogen, Zaborsky OR Ed., Plenum Press, New York (1998)
  10. Wang J, Wan W, Int. J. Hydrogen Energy, 34, 799 (2009)
  11. Park JI, Lee J, Sim SJ, Lee JH, Biothchnol. Bioproc. Eng., in press (2009)
  12. Jensen A, Hydrobiologia, 260-261, 15 (1993)
  13. Tseng CK, J. Appl. Phycol., 13, 375 (2001)
  14. Klass DL, Chem. Tech., 3, 161 (1974)
  15. Lay JJ, Biotechnol. Bioeng., 68(3), 269 (2000)
  16. Lee DG, Lee JH, Kim SJ, World J. Microbiol. Biotechnol., 21, 155 (2005)
  17. Wagner M, Amann R, Lemmer H, Schleifer KH, Appl. Environ. Microbiol., 59, 1520 (1993)
  18. Park SJ, Yoon JC, Shin KS, Kim EH, Yim S, Cho YJ, Sung GM, Lee DG, Kim SB, Lee DU, Woo SH, Koopman B, J. Microbiol., 45, 113 (2007)
  19. Cleseri LS, APHA, Standard methods for examination of water and wastewater, 18th ed., Environmental Federation, Washington DC (1992)
  20. Yang P, Zhang R, McGarvey JA, John R, Int. J. Hydrogen Energy, 32, 4761 (2007)
  21. Nath K, Kumar A, Das D, Appl. Microbiol. Biotechnol., 68(4), 533 (2005)
  22. Sivaramakrishna D, Sreekanth D, Himabindu V, Anjaneyulu Y, Renew. Energy, 34, 937 (2009)
  23. Fang HHP, Liu H, Bioresour. Technol., 82(1), 87 (2002)
  24. Ueno Y, Otsuka S, Morimoto M, J. Ferment. Bioeng., 82(2), 194 (1996)
  25. Pelletier E, Kreimeyer A, Bocs S, Rouy Z, Gyapay G, Chouari R, Riviere D, Ganesan A, Daegelen P, Sghir A, Cohen GN, Medigue C, Weissenbach J, Le Paslier D, J. Bacteriol., 190, 2572 (2008)
  26. Maymogatell X, Chien YT, Gossett JM, Zinder SH, Science, 276(5318), 1568 (1997)
  27. Penner TJ, Siddique T, Foght JM, http://www.ncbi.nlm.nih.gov/nuccore/170180273, Unpublished.
  28. Sousa DZ, Alves JI, Alves MM, Smidt H, Stams AJ, Environ. Microbiol., 11, 68 (2009)
  29. Kraemer JT, Bagley DM, Biotechnol. Lett., 29(5), 685 (2007)
  30. Stackebrandt E, Rainey FA, in The clostridia: molecular biology and pathogenesis, Rood J Ed., Academic Press, San Diego (1997)
  31. Mitchell WJ, in Clostridia: biotechnology and medical applications, Bahl H, Durre P Eds., Wiley-VCH, Weinheim (2001)
  32. Taguchi F, Chang JD, Mizukami N, Saito-Taki T, Hasegawa K, Morimoto M, Can. J. Microbiol., 39, 726 (1993)
  33. Zhanga H, Bruns MA, Logana BE, Water Res., 40, 728 (2006)
  34. Chen WM, Tseng ZJ, Lee KS, Chang JS, Int. J. Hydrogen Energy, 30, 1063 (2005)
  35. Singh A, Pandey KD, Dubey RS, Int. J. Hydrogen Energy, 24, 693 (1999)
  36. McTavish H, J. Biochem., 123, 644 (1998)
  37. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC, Bioresour. Technol., 99, 5444 (2008)
  38. Jeong TY, Cha GC, Yeom SH, Choi SS, J. Ind. Eng. Chem., 14(3), 333 (2008)
  39. You Y, Ren N, Wang A, Ma F, Gao L, Peng Y, Lee D, Int. J. Hydrogen Energy, 33, 3295 (2008)
  40. Oh YK, Seol EH, Lee EY, Park S, Int. J. Hydrogen Energy, 27, 1373 (2002)
  41. Nandi R, Sengupta S, Crit. Rev. Microbiol., 24, 61 (1998)