Automatica, Vol.44, No.12, 3219-3221, 2008
Some remarks on static-feedback linearization for time-varying systems
This work summarizes some results about static state feedback linearization for time-varying systems. Three different necessary and sufficient conditions are stated in this paper. The first condition is the one by [Sluis, W. M. (1993). A necessary condition for dynamic feedback linearization. Systems & Control Letters, 21, 277-283]. The second and the third are the generalizations of known results due respectively to [Aranda-Bricaire, E., Moog, C. H., Pomet, J. B. (1995). A linear algebraic framework for dynamic feedback linearization. IEEE Transactions on Automatic Control, 40, 127-132] and to [Jakubczyk, B., Respondek, W. (1980). On linearization of control systems. Bulletin del' Academie Polonaise des Sciences. Serie des Sciences Mathematiques, 28, 517-522]. The proofs of the second and third conditions are established by showing the equivalence between these three conditions. The results are re-stated in the infinite dimensional geometric approach of [Fliess, M., Levine J., Martin, P., Rouchon, P. (1999). A Lie-Backlund approach to equivalence and flatness of nonlinear systems. IEEE Transactions on Automatic Control, 44(5), 922-937]. (C) 2008 Elsevier Ltd. All rights reserved.
Keywords:Nonlinear systems;Time-varying systems;Feedback linearization;Differential flatness;Differential geometric approach