Biochemical and Biophysical Research Communications, Vol.374, No.3, 581-586, 2008
One amino acid difference is critical for suppression of the development of experimental autoimmune diabetes (EAD) with intravenous injection of insulinB : 9-23 peptide
InsulinB:9-23 peptide (insB:9-23) reactive T cells has been reported as crucial for type 1 diabetes. In this study, experimental autoimmune diabetes (EAD) mice, which subcutaneous immunization of ins1 or 2B:9-23 induced autoimmune diabetes in F1(B7.1B6 x BALB/c), was investigated for antigen specific therapy to delete pathogenic T cells. Intravenous injection of ins1 OF 213:9-23 significantly delayed the development of diabetes on the corresponding peptide-induced FAD (ins1EAD or ins2EAD) concomitant with reduced insulitis and insulin autoantibodies expression. Population of Foxp3(+) CD4(+) T cell was unchanged whereas the level of anti-insB:9-23 specific IgG(2a) but not IgG(1) were specifically decreased, Suggesting reduction of pathogenic insB:9-23 reactive T cells. Most interestingly, intravenous administration of ins2B:9-23, whose amino acid sequence had one amino acid difference at position 9 delayed the development of diabetes in both ins1EAD and ins2EAD whereas ins1B:9-23 administration delayed diabetes in the ins1EAD but not ins2EAD, suggesting that one amino acid difference gives critical influence on the effect of intravenous injection of antigenic peptide for type 1 diabetes. (C) 2008 Elsevier Inc. All rights reserved.