화학공학소재연구정보센터
Biochemical and Biophysical Research Communications, Vol.387, No.3, 461-466, 2009
Translocation of H-Ras and its implications in the development of diabetic retinopathy
H-Ras, a small molecular weight G-protein, undergoes post-translational modifications enabling its translocation from cytosol to the membrane. Hyperglycemia increases apoptosis of retinal capillary cells via activation of H-Ras, which can be ameliorated by farnesylation inhibitors. Our aim is to investigate the mechanism of retinal H-Ras activation in diabetes. H-Ras and Raf-1 were quantified in the retinal membrane and cytosol fractions obtained from streptozotocin-induced diabetes rats, and the role of posttranslation modification was determined by investigating the effect of simvastatin oil diabetes-induced alterations. The effect of H-Ras-siRNA on membrane translocation and apoptosis was also determined in bovine retinal endothelial cells (BRECs). Diabetes increased expressions of H-Ras and Raf-1 in the retinal membranes, and simvastatin prevented such trans location. Glucose-exposure of BRECs increased membrane H-Ras expression and H-Ras-siRNA prevented this translocation, and also decreased their apoptosis. Thus, membrane translocation of H-Ras is a plausible mechanism responsible for accelerated apoptosis of retinal capillary cells in diabetes. (C) 2009 Elsevier Inc. All rights reserved.