화학공학소재연구정보센터
Polymer(Korea), Vol.33, No.6, 544-550, November, 2009
[Epoxy/PEG/PVdF-HFP] 복합체를 이용한 리튬고분자전지용 화학겔의 제조 및 분석
Preparation and Characterization of Chemical Gel Based on [Epoxy/PEG/PVdF-HFP] Blend for Lithium Polymer Battery Applications
E-mail:
초록
본 연구에서는 LiPF6염 하에서의 에폭시, 폴리에틸렌글리콜, 이미다졸 촉매, ethylene carbonate와 propylene carbonate 1:1 가소제 혼합물을 열 경화하여 [Epoxy/PEG] 고분자겔 전해질 시스템을 고안하였다. 얻어진 [Epoxy/PEG] 고분자겔 전해질의 기계적 물성을 보완하기 위해서 PVdF-HFP를 복합화하였다. [Epoxy/PEG/PVdFHFP] 복합체 고분자겔 전해질은 기계적 안정성 및 치수 안정성이 우수하였으며, 복합체의 이온전도도는 복합체의 액체 전해질의 양뿐만 아니라 PVdF-HFP 양에 크게 의존하는 결과를 얻었다. 최적화된 고분자겔 시스템의 상온 이온전도도는 2.56×10^(-3) S/cm를 나타내었다.
In this study, we have designed [Epoxy/PEG] polymer gel electrolyte systems by thermal curing the mixtures of epoxy, PEG, imidazole catalyst, and a plasticizer of 1:1 ethylene carbonate and propylene carbonate in the presence of LiPF6 salt. In order to enhance the poor mechanical property of the corresponding [Epoxy/PEG] gel electrolyte PVdF-HFP was incorporated into the system. The ionic conductivities of the polymer gel electrolytes were related to the amount of PVdF-HFP in blends as well as the amount of liquid electrolyte. The optimized gel system showed room-temperature conductivities of 2.56×10^(-3) S/cm.
  1. Armand MB, MacCallum JR, Vincent CA, Eds., in Polymer Electrolyte Review-1, Elsvier, New York, p 1 (1987)
  2. Ratner MA, Nitzan A, Faraday Discuss. Chem. Soc., 88, 19 (1990)
  3. Abraham KM, Jiang Z, Carroll B, Chem. Mater., 9, 1978 (1997)
  4. Johnson JA, Saboungi ML, Price DL, Ansell S, Russell TP, Halley JW, Nielsen B, J. Chem. Phys., 109(16), 7005 (1998)
  5. Di Noto V, Vittadello M, Greenbaum SG, Suarez S, Kano K, Furukawa T, J. Phys. Chem. B, 108(49), 18832 (2004)
  6. Ghosh BD, Lott KF, Ritchie JE, Chem. Mater., 17, 661 (2005)
  7. MacCallum JR, Vincent CA, Polymer Electrolyte Reviews, Elsevier Applied Science, New York (1989)
  8. Xu W, Belieres J, Angell CA, Chem. Mater., 13, 575 (2001)
  9. Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC, Macromolecules, 37(22), 8424 (2004)
  10. Nagoka K, Naruse H, Ahinohara I, Watanabe M, J. Polym. Sci., Polym. Lett. Ed., 22, 659 (1984)
  11. Watanabe M, Rikukawa M, Sanui K, Ogata N, Macromolecules, 19, 188 (1986)
  12. Fish D, Khan IM, Wu E, Smid J, Br. Polym. Adv. Technol., 4, 281 (1988)
  13. Inoue K, Nishikawa Y, Tanigaki T, Macromolecules, 24, 3646 (1991)
  14. Tada Y, Sato M, Takeno N, Nakacho Y, Shigehara K, Chem. Mater., 62, 7 (1994)
  15. Liu G, Reinhout M, Mainguy B, Baker GL, Macromolecules, 39(14), 4726 (2006)
  16. Andrei M, Marchese L, Roggero A, Prosperi P, Solid State Ion., 72, 140 (1994)
  17. Watanabe M, Nishimoto A, Solid State Ion., 79, 306 (1995)
  18. Jannasch P, Chem. Mater., 14, 2718 (2002)
  19. Kataoka H, Saito Y, Uetani Y, Murata S, Kii K, J. Phys. Chem. B, 106(46), 12084 (2002)
  20. Sun XG, Lin YQ, Jing XB, Solid State Ion., 83(1-2), 79 (1996)
  21. Watanabe M, Nishimoto A, Solid State Ion., 79, 306 (1995)
  22. Basak P, Manorama SV, Singh RK, Parkash O, J. Phys. Chem. B, 109(3), 1174 (2005)
  23. Alamgir M, Abrahama KM, J. Power Sources, 54, 40 (1995)
  24. Alamgir M, Abrahama KM, J. Electrochem. Soc., 140, L96 (1993)
  25. Jiang E, Carroll B, Abraham KM, Electrochim. Acta, 422, 667 (1997)
  26. Tokuda H, Tabata SI, Susan MABH, Hayamizu K, Watanabe M, J. Phys. Chem. B, 108(32), 11995 (2004)
  27. Croce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B, Electrochim. Acta, 39(14), 2187 (1994)
  28. Abraham KM, Kuzhikalail M, Alamgir M, US Pat. 5,219,679 (1990)
  29. Richard MN, Koetscu I, Dahn JR, J. Electrochem. Soc., 144, 544 (1997)
  30. Kim CH, Kim HT, Park JK, Moon SI, Yoon MS, J. Polym. Sci., Polym. Phys., 34, 2609 (1996)
  31. Sung HY, Wang YY, Wan CC, J. Electrochem. Soc., 145(4), 1207 (1998)
  32. Rhoo HJ, Kim HT, Park JK, Hwang TS, Electrochim. Acta, 42, 1571 (1995)