Polymer(Korea), Vol.33, No.6, 544-550, November, 2009
[Epoxy/PEG/PVdF-HFP] 복합체를 이용한 리튬고분자전지용 화학겔의 제조 및 분석
Preparation and Characterization of Chemical Gel Based on [Epoxy/PEG/PVdF-HFP] Blend for Lithium Polymer Battery Applications
E-mail:
초록
본 연구에서는 LiPF6염 하에서의 에폭시, 폴리에틸렌글리콜, 이미다졸 촉매, ethylene carbonate와 propylene carbonate 1:1 가소제 혼합물을 열 경화하여 [Epoxy/PEG] 고분자겔 전해질 시스템을 고안하였다. 얻어진 [Epoxy/PEG] 고분자겔 전해질의 기계적 물성을 보완하기 위해서 PVdF-HFP를 복합화하였다. [Epoxy/PEG/PVdFHFP] 복합체 고분자겔 전해질은 기계적 안정성 및 치수 안정성이 우수하였으며, 복합체의 이온전도도는 복합체의 액체 전해질의 양뿐만 아니라 PVdF-HFP 양에 크게 의존하는 결과를 얻었다. 최적화된 고분자겔 시스템의 상온 이온전도도는 2.56×10^(-3) S/cm를 나타내었다.
In this study, we have designed [Epoxy/PEG] polymer gel electrolyte systems by thermal curing
the mixtures of epoxy, PEG, imidazole catalyst, and a plasticizer of 1:1 ethylene carbonate and propylene carbonate in the presence of LiPF6 salt. In order to enhance the poor mechanical property of the corresponding [Epoxy/PEG] gel electrolyte PVdF-HFP was incorporated into the system. The ionic conductivities of the polymer gel electrolytes were related to the amount of PVdF-HFP in blends as well as the amount of liquid electrolyte. The optimized gel system showed room-temperature conductivities of 2.56×10^(-3) S/cm.
- Armand MB, MacCallum JR, Vincent CA, Eds., in Polymer Electrolyte Review-1, Elsvier, New York, p 1 (1987)
- Ratner MA, Nitzan A, Faraday Discuss. Chem. Soc., 88, 19 (1990)
- Abraham KM, Jiang Z, Carroll B, Chem. Mater., 9, 1978 (1997)
- Johnson JA, Saboungi ML, Price DL, Ansell S, Russell TP, Halley JW, Nielsen B, J. Chem. Phys., 109(16), 7005 (1998)
- Di Noto V, Vittadello M, Greenbaum SG, Suarez S, Kano K, Furukawa T, J. Phys. Chem. B, 108(49), 18832 (2004)
- Ghosh BD, Lott KF, Ritchie JE, Chem. Mater., 17, 661 (2005)
- MacCallum JR, Vincent CA, Polymer Electrolyte Reviews, Elsevier Applied Science, New York (1989)
- Xu W, Belieres J, Angell CA, Chem. Mater., 13, 575 (2001)
- Chiu CY, Chen HW, Kuo SW, Huang CF, Chang FC, Macromolecules, 37(22), 8424 (2004)
- Nagoka K, Naruse H, Ahinohara I, Watanabe M, J. Polym. Sci., Polym. Lett. Ed., 22, 659 (1984)
- Watanabe M, Rikukawa M, Sanui K, Ogata N, Macromolecules, 19, 188 (1986)
- Fish D, Khan IM, Wu E, Smid J, Br. Polym. Adv. Technol., 4, 281 (1988)
- Inoue K, Nishikawa Y, Tanigaki T, Macromolecules, 24, 3646 (1991)
- Tada Y, Sato M, Takeno N, Nakacho Y, Shigehara K, Chem. Mater., 62, 7 (1994)
- Liu G, Reinhout M, Mainguy B, Baker GL, Macromolecules, 39(14), 4726 (2006)
- Andrei M, Marchese L, Roggero A, Prosperi P, Solid State Ion., 72, 140 (1994)
- Watanabe M, Nishimoto A, Solid State Ion., 79, 306 (1995)
- Jannasch P, Chem. Mater., 14, 2718 (2002)
- Kataoka H, Saito Y, Uetani Y, Murata S, Kii K, J. Phys. Chem. B, 106(46), 12084 (2002)
- Sun XG, Lin YQ, Jing XB, Solid State Ion., 83(1-2), 79 (1996)
- Watanabe M, Nishimoto A, Solid State Ion., 79, 306 (1995)
- Basak P, Manorama SV, Singh RK, Parkash O, J. Phys. Chem. B, 109(3), 1174 (2005)
- Alamgir M, Abrahama KM, J. Power Sources, 54, 40 (1995)
- Alamgir M, Abrahama KM, J. Electrochem. Soc., 140, L96 (1993)
- Jiang E, Carroll B, Abraham KM, Electrochim. Acta, 422, 667 (1997)
- Tokuda H, Tabata SI, Susan MABH, Hayamizu K, Watanabe M, J. Phys. Chem. B, 108(32), 11995 (2004)
- Croce F, Gerace F, Dautzemberg G, Passerini S, Appetecchi GB, Scrosati B, Electrochim. Acta, 39(14), 2187 (1994)
- Abraham KM, Kuzhikalail M, Alamgir M, US Pat. 5,219,679 (1990)
- Richard MN, Koetscu I, Dahn JR, J. Electrochem. Soc., 144, 544 (1997)
- Kim CH, Kim HT, Park JK, Moon SI, Yoon MS, J. Polym. Sci., Polym. Phys., 34, 2609 (1996)
- Sung HY, Wang YY, Wan CC, J. Electrochem. Soc., 145(4), 1207 (1998)
- Rhoo HJ, Kim HT, Park JK, Hwang TS, Electrochim. Acta, 42, 1571 (1995)