Polymer(Korea), Vol.33, No.6, 575-580, November, 2009
전자선 가교 방법을 이용한 탄소/탄화규소 복합재 제조 및 특성
Fabrication and Characterization of C/SiC Composite by Electron Beam Curing
E-mail:
초록
폴리카보실란에 탄소직물을 보강제로 이용하여 제조한 탄소/탄화규소 복합재는 좋은 내산화 특성과 열 충격에 강한 특성으로 인해 높은 온도의 구조체에 적용되고 있다. 본 연구에서는 고분자 함침 열분해법을 이용하여 탄소직물에 폴리카보실란 용액을 함침한 후, 전자선을 이용하여 가교하고, 열분해 과정을 통해 탄소/탄화규소 복합재로 제조하였다. 실험 결과 복합재 시료의 공극률과 밀도는 각각 13.5%와 2.44 g/cm3을 나타냈고, 내산화 특성은 지속적인 고온의 산화 분위기에서 95.9%의 잔류량을 나타내어 본 연구에서 제조한 탄소/탄화규소 복합재의 우수한 내산화 특성을 확인하였다.
Carbon fabric-reinforced silicon carbide composites (C/SiC) have attracted a considerable
attention for high temperature structural application because of their outstanding oxidation resistance property and thermal shock resistance. In this study, we reported on the preparation of C/SiC composites by the polymer impregnation and pyrolysis (PIP) method. For this, polycarbosilane solution was impregnated into the carbon fabric and then cured by electron beam irradiation under argon atmosphere. Afterwards, the cured composite was pyrolyzed at 1300 ℃ for 1 h under argon atmosphere to produce the C/SiC composite. The porosity and density of the C/SiC composite were 13.5% and 2.44 g/cm3, respectively, when the impregnation of the carbon fabric with the 30 wt% polycarbosilane solution conducted four times. In addition, in the isothermal experiment at 1500 ℃ in air for 5 h, the 95.9 wt% of the C/SiC composite was remained, indicating that the prepared C/SiC composite has a outstanding oxidation resistance.
- Buckley JD, Ceram. Bull., 67, 364 (1988)
- Kubota M, Tsuge S, Kitagawa K, Arai N, Ushigome N, Kato Y, Energy Conv. Manag., 42(15-17), 1977 (2001)
- Sheehan JE, Buesking KW, Sullivan BJ, Annu. Rev. Mater. Sci., 24, 19 (1994)
- Westwood ME, Webster JD, Day RJ, Hayes FH, Taylor R, J. Mater. Sci., 31(6), 1389 (1996)
- Huang JF, Li HJ, Zeng XR, Li KZ, Ceram. Int., 32, 417 (2006)
- Jacobson NS, Curry DM, Carbon, 44, 1142 (2006)
- Greim J, Hunold K, Schwetz KA, Lipp A, Adv. Eng. Ceram., 46, 173 (1990)
- Lynch JF, Ungar EE, Duckworth WH, Am., Ceram. Soc. Bull., 40, 444 (1961)
- Andrew AB, Greg EH, William GF, Douglas MD, Hsin W, Intermetallics, 16, 854 (2008)
- Guofeng L, Shengru Q, Chengyu Z, Juntao H, Dechang J, Yuebing Z, Composite A, 39, 1467 (2008)
- Jiehua Z, Shengru Q, Grofeng L, Yuebing Z, Wenbo H, Dechang J, J. Mater. Process. Tech., 190, 358 (2007)
- Ke J, Zhao HC, Qing SM, Wen WZ, Mater. Sci. Eng. A, 390, 154 (2005)
- Sasaki M, Hirai T, J. Eur. Ceram. Soc., 14, 257 (1994)
- Noda T, Araki H, Suzuki H, J. Nucl. Mater., 212, 823 (1994)
- Berbon MZ, Dietrich DR, Marshall DB, Hasselman DPH, J. Am. Ceram. Soc., 84(10), 2229 (2001)
- Okada K, Kato H, Nakajima K, J. Am. Ceram. Soc., 99, 1691 (1994)
- Takeda M, Imai Y, Ichikawa H, Kasai N, Seguchi T, Okamura K, Comp. Sci. Tech., 59, 739 (1999)
- Idesaki A, Narisawa M, Okamura K, Sugimoto M, Morita Y, Seguchi T, Itoh M, Rad. Phys. Chem., 60, 483 (2001)
- Kang PH, Jeun JP, Seo DK, Nho YC, Rad. Phys. Chem., 78, 493 (2009)
- Kang PH, Yang HS, Korean J. Chem. Eng., 15(6), 580 (1998)
- Kawamura K, Ono M, Okazaki K, Carbon, 30, 429 (1992)