Biotechnology and Bioengineering, Vol.100, No.4, 619-626, 2008
Enzymatic degradation of low soluble compounds in monophasic water : solvent reactors. Kinetics and modeling of anthracene degradation by MnP
Polycyclic aromatic hydrocarbons (PAHs) are toxic compounds presenting low water solubility and high hydrophobicity, which greatly hampers their natural biodegradation. The enzymatic degradation of a model compound, anthracene, was evaluated in presence of a miscible solvent for an increased solubility. Manganese peroxidase, a ligninolytic enzyme from white-rot fungi, was used as biocatalyst in a medium containing acetone. The kinetic parameters of the enzymatic degradation of anthracene, obtained from fed-batch experiments, were applied to model the operation of a continuous reactor. Kinetics comprised a Michaelis-Menten equation, modified with an autocatalytic term, assumed to the effect of quinones acting as electron carriers, and a logistic function related to enzyme activity. The continuous reactor has been operated for 108 h, attaining a 90% of anthracene degradation, which demonstrated the feasibility of the system for its application in the removal of poorly soluble compounds. The model of this reactor permitted to predict accurately anthracene degradation in different conditions, such as external addition of anthraquinone and different enzymatic activities.