화학공학소재연구정보센터
Biotechnology and Bioengineering, Vol.101, No.4, 702-713, 2008
Comparison of Microbial Community Composition and Activity in Sulfate-Reducing Batch Systems Remediating Mine Drainage
Five microbial inocula were evaluated in batch tests for the ability to remediate mine drainage (MD). Dairy manure (DM), anaerobic digester sludge, substrate from the Luttrell (LUTR) and Peerless Jenny King (PJK) sulfate-reducing permeable reactive zones (SR-PRZs) and material from an MD-treatment column that had been inoculated with material from a previous MD-treatment column were compared in terms of sulfate and metal removal and pH neutralization. The microbial communities were characterized at 0, 2, 4, 9, and 14 weeks using denaturing gradient gel electrophoresis and quantitative polymerase chain reaction to quantify all bacteria and the sulfate-reducing bacteria of the genus Desulfovibrio. The cultures inoculated with the LUTR, PJK, and DM materials demonstrated significantly higher rates of sulfate and metal removal, and contained all the microorganisms associated with the desired functions of SR-PRZs (i.e., polysaccharide degradation, fermentation, and sulfate reduction) as well as a relatively high proportion of Desulfovibrio spp. These results demonstrate that inoculum influences performance and also provide insights into key aspects of inoculum composition that impact performance. This is the first systematic biomolecular examination of the relationship between microbial community composition and MD remediation capabilities.