Biotechnology and Bioengineering, Vol.101, No.5, 903-912, 2008
Maximizing the Liquid Fuel Yield in a Biorefining Process
Biorefining strives to recover the maximum value from each fraction, at minimum energy cost. In order to seek an unbiased and thorough assessment of the alleged opportunity offered by biomass fuels, the direct conversion of various lignocellulosic biomass was studied: aspen pulp wood (Populus tremuloides), aspen wood pretreated with dilute acid, aspen lignin, aspen logging residues, corn stalk, corn spathe, corn cob, corn stover, corn stover pellet, corn stover pretreated with dilute acid, and lignin extracted from corn stover. Besides the heating rate, the yield of liquid products was found to be dependent on the final liquefaction temperature and the length of liquefaction time. The major compounds of the liquid products from various origins were identified by GC-MS. The lignin was found to be a good candidate for the liquefaction process, and biomass fractionation was necessary to maximize the yield of the liquid bio-fuel. The results suggest a biorefinery process accompanying pretreatment, fermentation to ethanol, liquefaction to bio-crude oil, and other thermo-conversion technologies, such as gasification. Other biorefinery options, including super-critical water gasification and the effectual utilization of the bio-crude oil, are also addressed.
Keywords:biorefinery;liquefaction;aspen;corn stover;supercritical water gasification;utilization of the bio-crude oil